RESUMO
Mushroom-forming fungi (Agaricomycetes) employ enzymatic and nonenzymatic cellulose degradation mechanisms, the latter presumably relying on Fenton-generated radicals. The effects of the two mechanisms on the cellulose microfibrils structure remain poorly understood. We examined cellulose degradation caused by litter decomposers and wood decomposers, including brown-rot and white-rot fungi and one fungus with uncertain wood decay type, by combining small- and wide-angle X-ray scattering. We also examined the effects of commercial enzymes and Fenton-generated radicals on cellulose using the same method. We detected two main degradation or modification mechanisms. The first characterized the mechanism used by most fungi and resembled enzymatic cellulose degradation, causing simultaneous microfibril thinning and decreased crystalline cellulose. The second mechanism was detected in one brown-rot fungus and one litter decomposer and was characterized by patchy amorphogenesis of crystalline cellulose without substantial thinning of the fibers. This pattern did not resemble the effect of Fenton-generated radicals, suggesting a more complex mechanism is involved in the destruction of cellulose crystallinity by fungi. Furthermore, our results showed a mismatch between decay classifications and cellulose degradation patterns and that even within litter decomposers two degradation mechanisms were found, suggesting higher functional diversity under current ecological classifications of fungi. IMPORTANCE Cellulose degradation by fungi plays a fundamental role in terrestrial carbon cycling, but the mechanisms by which fungi cope with the crystallinity of cellulose are not fully understood. We used X-ray scattering to analyze how fungi, a commercial enzyme mix, and a Fenton reaction-generated radical alter the crystalline structure of cellulose. Our data revealed two mechanisms involved in crystalline cellulose degradation by fungi: one that results in the thinning of the cellulose fibers, resembling the enzymatic degradation of cellulose, and one that involves amorphogenesis of crystalline cellulose by yet-unknown pathways, resulting in a patchy-like degradation pattern. These results pave the way to a deeper understanding of cellulose degradation and the development of novel ways to utilize crystalline cellulose.
Assuntos
Agaricales , Basidiomycota , Agaricales/metabolismo , Basidiomycota/metabolismo , Celulose/metabolismo , Fungos/metabolismo , Lignina/metabolismo , Microfibrilas/metabolismo , Madeira/microbiologia , Raios XRESUMO
Cotton production is reaching a global limit, leading to a growing demand for bio-based textile fibers produced by other means. Textile fibers based on regenerated cellulose from wood holds great potential, but in order to produce fibers, the components need to be dissolved in suitable solvents. Furthermore, the dissolution process of cellulose is not yet fully understood. In this study, we investigated the dissolution state of microcrystalline cellulose in aqueous NaOH by using primarily scattering methods. Contrary to previous findings, this study indicated that cellulose concentrations of up to 2 wt % are completely molecularly dissolved in 8 wt % NaOH. Scattering data furthermore revealed the presence of semi-flexible cylinders with stiff segments. In order to improve the dissolution capability of NaOH, the effects of different additives have been of interest. In this study, scattering data indicated that the addition of ZnO decreased the formation of aggregates, while the addition of PEG did not improve the dissolution properties significantly, although preliminary NMR data did suggest a weak attraction between PEG and cellulose. Overall, this study sheds further light on the dissolution of cellulose in NaOH and highlights the use of scattering methods to assess solvent quality.
RESUMO
We investigated the difference between postoperative rehabilitation with or without adjunctive intermittent pneumatic compression therapy following distal radial fracture treated with volar plating. A total of 115 patients were randomized to a control or to an experimental group. After 4 weeks of immobilization the experimental group received intermittent pneumatic compression therapy in addition to conventional postoperative rehabilitation. Primary outcome up to 1 year postoperatively was assessed using the Canadian Occupational Performance Measure. No significant differences between groups were found. There were no clinically relevant differences regarding the secondary outcome measures swelling, strength, pain and flexibility. We conclude that postoperative intermittent pneumatic compression treatment had no major benefits. The results of the present study do not support general use of intermittent pneumatic compression initiated 4 weeks following volar plating surgery for distal radial fracture. LEVEL OF EVIDENCE: I.
Assuntos
Placas Ósseas , Fixação Interna de Fraturas , Dispositivos de Compressão Pneumática Intermitente , Cuidados Pós-Operatórios , Fraturas do Rádio/reabilitação , Fraturas do Rádio/cirurgia , Atividades Cotidianas , Idoso , Idoso de 80 Anos ou mais , Edema/fisiopatologia , Feminino , Força da Mão/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Pronação/fisiologia , Estudos Prospectivos , Fraturas do Rádio/fisiopatologia , Supinação/fisiologia , Escala Visual Analógica , Articulação do Punho/fisiologiaRESUMO
Ensuring the integrity and transferability of digital messages is an important challenge in modern communications. Although purely mathematical approaches exist, they usually rely on the computational complexity of certain functions, in which case there is no guarantee of long-term security. Alternatively, quantum digital signatures offer security guaranteed by the physical laws of quantum mechanics. Prior experimental demonstrations of quantum digital signatures in optical fiber have typically been limited to operation over short distances and/or operated in a laboratory environment. Here we report the experimental transmission of quantum digital signatures over channel losses of up to 42.8 ± 1.2 dB in a link comprised of 90 km of installed fiber with additional optical attenuation introduced to simulate longer distances. The channel loss of 42.8 ± 1.2 dB corresponds to an equivalent distance of 134.2 ± 3.8 km and this represents the longest effective distance and highest channel loss that quantum digital signatures have been shown to operate over to date. Our theoretical model indicates that this represents close to the maximum possible channel attenuation for this quantum digital signature protocol, defined as the loss for which the signal rate is comparable to the dark count rate of the detectors.
RESUMO
Topological quantum matter can be realized by subjecting engineered systems to time-periodic modulations. In analogy with static systems, periodically driven quantum matter can be topologically classified by topological invariants, whose non-zero value guarantees the presence of robust edge modes. In the high-frequency limit of the drive, topology is described by standard topological invariants, such as Chern numbers. Away from this limit, these topological numbers become irrelevant, and novel topological invariants must be introduced to capture topological edge transport. The corresponding edge modes were coined anomalous topological edge modes, to highlight their intriguing origin. Here we demonstrate the experimental observation of these topological edge modes in a 2D photonic lattice, where these propagating edge states are shown to coexist with a quasi-localized bulk. Our work opens an exciting route for the exploration of topological physics in time-modulated systems operating away from the high-frequency regime.
RESUMO
Quantum digital signatures (QDSs) apply quantum mechanics to the problem of guaranteeing message integrity and non-repudiation with information-theoretical security, which are complementary to the confidentiality realized by quantum key distribution (QKD). Previous experimental demonstrations have been limited to transmission distances of less than 5 km of optical fiber in a laboratory setting. Here we report, to the best of our knowledge, the first demonstration of QDSs over installed optical fiber, as well as the longest transmission link reported to date. This demonstration used a 90 km long differential phase shift QKD to achieve approximately one signed bit per second, an increase in the signature generation rate of several orders of magnitude over previous optical fiber demonstrations.
RESUMO
Digital signatures guarantee the authorship of electronic communications. Currently used "classical" signature schemes rely on unproven computational assumptions for security, while quantum signatures rely only on the laws of quantum mechanics to sign a classical message. Previous quantum signature schemes have used unambiguous quantum measurements. Such measurements, however, sometimes give no result, reducing the efficiency of the protocol. Here, we instead use heterodyne detection, which always gives a result, although there is always some uncertainty. We experimentally demonstrate feasibility in a real environment by distributing signature states through a noisy 1.6 km free-space channel. Our results show that continuous-variable heterodyne detection improves the signature rate for this type of scheme and therefore represents an interesting direction in the search for practical quantum signature schemes. For transmission values ranging from 100% to 10%, but otherwise assuming an ideal implementation with no other imperfections, the signature length is shorter by a factor of 2 to 10. As compared with previous relevant experimental realizations, the signature length in this implementation is several orders of magnitude shorter.
RESUMO
OBJECTIVE: The aim of this study was to describe nurses' experiences (>two years) of caring for dying patients in surgical wards. BACKGROUND: Palliative care is included in education for nurses. However, the training content varies, and nurse educators need to be committed to the curriculum regarding end-of-life situations. A lack of preparation among newly graduated nurses regarding dying and death could lead to anxiety, stress and burnout. Therefore, it is important to improve knowledge regarding end-of-life situations. SETTING, PARTICIPANTS AND METHOD: A qualitative descriptive study was carried out in two surgical wards in the southern part of Sweden. The study comprised six interviews with registered nurses and was analysed using manifest qualitative content analysis, a qualitative method that involves an inductive approach, to increase our understanding of nurses' perspectives and thoughts regarding dying patients. RESULTS: The results formed one category (caring-to be involved) and three subcategories (being supportive, being frustrated and being sensitive in the caring processes). Nurses were personally affected and felt unprepared to face dying patients due to a lack of knowledge about the field of palliative care. Their experiences could be described as processes of transition from theory to practice by trial and error. CONCLUSION: Supervision is a valuable tool for bridging the gap between theory and practice in nursing during the transition from novice to expert. Improved knowledge about palliative care during nursing education and committed nursing leadership at the ward level facilitate preparation for end-of-life situations.
Assuntos
Empatia , Relações Enfermeiro-Paciente , Enfermeiras e Enfermeiros/psicologia , Cuidados Paliativos/psicologia , Educação em Enfermagem , Humanos , Entrevistas como Assunto , Recursos Humanos de Enfermagem Hospitalar , Pesquisa Qualitativa , Suécia , Assistência TerminalRESUMO
We demonstrate the first experimental realization of a dispersionless state, in a photonic Lieb lattice formed by an array of optical waveguides. This engineered lattice supports three energy bands, including a perfectly flat middle band with an infinite effective mass. We analyze, both experimentally and theoretically, the evolution of well-prepared flat-band states, and show their remarkable robustness, even in the presence of disorder. The realization of flat-band states in photonic lattices opens an exciting door towards quantum simulation of flat-band models in a highly controllable environment.
RESUMO
Previous studies have shown altered neck muscle function in individuals with chronic whiplash associated disorder (WAD). However, we lack real-time investigations with non-invasive methods that can distinguish between the different ventral neck muscle layers. This study investigated deformations and deformation rates in the sternocleidomastoid (SCM), longus capitis (Lcap), and longus colli (Lco) muscles with real-time ultrasonography. Twenty-six individuals with WAD were compared with 26 controls, matched for age and sex. Ultrasound imaging of the SCM, Lcap, and Lco were recorded during 10 repetitive arm elevations. The first and tenth arm elevations were post-process analyzed with speckle tracking. There were few significant differences in the deformations or deformation rates in the SCM, Lcap, and Lco between the WAD and control group. In controls, deformations and deformation rates showed linear positive relationships between SCM/Lcap, SCM/Lco, and Lcap/Lco which increased from the first arm elevation (R(2) = 0.14-0.70); to the tenth arm elevation (R(2) = 0.51-0.71). The WAD group showed similar or weaker linear relationship (R(2) < 0.19) during the tenth compared to the first (R(2) < 0.44) arm elevation except for deformations in Lcap/Lco (R(2) = 0.13-0.57). This result indicated that deformations and deformation rates in one muscle were correlated by similar deformations and deformation rates in other neck muscles in the control group, but this interplay between muscles was not found in the WAD group.
Assuntos
Fadiga Muscular , Músculos do Pescoço/fisiopatologia , Medição da Dor , Traumatismos em Chicotada/diagnóstico por imagem , Traumatismos em Chicotada/fisiopatologia , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Escala de Gravidade do Ferimento , Masculino , Pessoa de Meia-Idade , Valores de Referência , Ultrassonografia Doppler/métodosRESUMO
The Wilms Tumour 1 (WT1) gene is a complex gene which was originally linked to suppression of cancer in kidneys. Studies of WT1-knockout mice confirmed the important role of WT1 in the pathogenesis of Wilms' tumour, a tumour which accounts for 95% of all childhood renal tumours. In such cases, the WT1 gene acts as a tumour-suppressor gene. Subsequent research has shown that the WT1 gene in many other cases acts as an oncogene, most prominently in leukaemia and lung cancer (even though these cancer forms can emerge as a result of many other aetiological factors). Since WT1 acts as an oncogene in many different organs, it is of great importance to evaluate how and when the WT1 gene and protein act. This information can then be used to develop immunotherapy to stabilize and treat different malignant diseases. Both phase I and phase II studies have been carried out on candidate vaccines with varying but overall promising results. The immune response does not always correlate with the clinical response, however, and the efficacy of the treatment is often limited. Further development is, therefore, needed to understand how vaccines can be improved, so that they, can hopefully fulfil a clinical role in the future.
Assuntos
Transformação Celular Neoplásica/genética , Imunoterapia , Neoplasias/genética , Neoplasias/terapia , Proteínas WT1/genética , Animais , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Humanos , Neoplasias/imunologia , Proteínas WT1/metabolismoRESUMO
Digital signatures are widely used to provide security for electronic communications, for example, in financial transactions and electronic mail. Currently used classical digital signature schemes, however, only offer security relying on unproven computational assumptions. In contrast, quantum digital signatures offer information-theoretic security based on laws of quantum mechanics. Here, security against forging relies on the impossibility of perfectly distinguishing between nonorthogonal quantum states. A serious drawback of previous quantum digital signature schemes is that they require long-term quantum memory, making them impractical at present. We present the first realization of a scheme that does not need quantum memory and which also uses only standard linear optical components and photodetectors. In our realization, the recipients measure the distributed quantum signature states using a new type of quantum measurement, quantum state elimination. This significantly advances quantum digital signatures as a quantum technology with potential for real applications.
RESUMO
The RECK (reversion-inducing cysteine-rich protein with Kazal motifs) gene is a relatively newly discovered gene with important implications in cancer biology. RECK is normally expressed in all cells of the body and has an important role in the balance between destructive and constructive features of the extracellular matrix (ECM). The RECK protein is a membrane-bound glycoprotein that inhibits matrix metalloproteinases with the function of breaking-down the ECM. There is a significant correlation between RECK gene expression and the formation of new vessels, presumably via the mediation of vascular endothelial growth factor (VEGF), which is an important and powerful inducer of angiogenesis. Research has shown that down-regulation of RECK is caused by the rat sarcoma oncogene (RAS), which is also a common cause of tumor development in the early stages. For a tumor to progress and gain characteristics that classifies it as malignant, the degradation of the ECM and mobilization of new blood vessels are essential functions. If the tumor is inhibited with respect to these functions, it will cease to grow. RECK is, therefore, a potential tumor inhibitor but also a prognostic marker available at early clinical stages.
Assuntos
Proteínas Ligadas por GPI/fisiologia , Metaloproteinases da Matriz/metabolismo , Neoplasias/irrigação sanguínea , Neovascularização Patológica/prevenção & controle , Animais , Matriz Extracelular/metabolismo , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/genética , Humanos , Metaloproteinase 9 da Matriz/genética , Inibidores de Metaloproteinases de Matriz/farmacologiaRESUMO
Quantum digital signatures (QDSs) allow the sending of messages from one sender to multiple recipients, with the guarantee that messages cannot be forged or tampered with. Additionally, messages cannot be repudiated--if one recipient accepts a message, she is guaranteed that others will accept the same message as well. While messaging with these types of security guarantees are routinely performed in the modern digital world, current technologies only offer security under computational assumptions. QDSs, on the other hand, offer security guaranteed by quantum mechanics. All thus far proposed variants of QDSs require long-term, high quality quantum memory, making them unfeasible in the foreseeable future. Here, we present a QDS scheme where no quantum memory is required, which also needs just linear optics. This makes QDSs feasible with current technology.
Assuntos
Comunicação , Segurança Computacional , Teoria QuânticaRESUMO
Revivals of quantum correlations in composite open quantum systems are a useful dynamical feature against detrimental effects of the environment. Their occurrence is attributed to flows of quantum information back and forth from systems to quantum environments. However, revivals also show up in models where the environment is classical, thus unable to store quantum correlations, and forbids system-environment back-action. This phenomenon opens basic issues about its interpretation involving the role of classical environments, memory effects, collective effects and system-environment correlations. Moreover, an experimental realization of back-action-free quantum revivals has applicative relevance as it leads to recover quantum resources without resorting to more demanding structured environments and correction procedures. Here we introduce a simple two-qubit model suitable to address these issues. We then report an all-optical experiment which simulates the model and permits us to recover and control, against decoherence, quantum correlations without back-action. We finally give an interpretation of the phenomenon by establishing the roles of the involved parties.
RESUMO
An important task for quantum-information processing is optimal discrimination between two nonorthogonal quantum states, which until now has been realized only optically. Here, we present and compare experimental realizations of optimal quantum measurements for distinguishing between two nonorthogonal quantum states encoded in a single (14)N nuclear spin at a nitrogen-vacancy defect in diamond. Implemented measurement schemes are the minimum-error measurement (known as Helstrom measurement), unambiguous state discrimination using a standard projective measurement, and optimal unambiguous state discrimination [known as Ivanovic-Dieks-Peres (IDP) measurement], which utilizes a three-dimensional Hilbert space. This allows us to benchmark the IDP measurement against the standard projective measurements. Measurement efficiencies are found to be above 80% for all schemes and reach a value of 90% for the IDP measurement.
RESUMO
Digital signatures are frequently used in data transfer to prevent impersonation, repudiation and message tampering. Currently used classical digital signature schemes rely on public key encryption techniques, where the complexity of so-called 'one-way' mathematical functions is used to provide security over sufficiently long timescales. No mathematical proofs are known for the long-term security of such techniques. Quantum digital signatures offer a means of sending a message, which cannot be forged or repudiated, with security verified by information-theoretical limits and quantum mechanics. Here we demonstrate an experimental system, which distributes quantum signatures from one sender to two receivers and enables message sending ensured against forging and repudiation. Additionally, we analyse the security of the system in some typical scenarios. Our system is based on the interference of phase-encoded coherent states of light and our implementation utilizes polarization-maintaining optical fibre and photons with a wavelength of 850 nm.
RESUMO
BACKGROUND, AIM, AND SCOPE: Degradation of the 16 US EPA priority PAHs in soil subjected to bioremediation is often achieved. However, the PAH loss is not always followed by a reduction in soil toxicity. For instance, bioanalytical testing of such soil using the chemical-activated luciferase gene expression (CALUX) assay, measuring the combined effect of all Ah receptor (AhR) activating compounds, occasionally indicates that the loss of PAHs does not correlate with the loss of Ah receptor-active compounds in the soil. In addition, standard PAH analysis does not address the issue of total toxicant bioavailability in bioremediated soil. MATERIALS AND METHODS: To address these questions, we have used the CALUX AhR agonist bioassay and the Comet genotoxicity bioassay with RTL-W1 cells to evaluate the toxic potential of different extracts from a PAH-contaminated soil undergoing large-scale bioremediation. The extracts were also chemically analyzed for PAH16 and PCDD/PCDF. Soil sampled on five occasions between day 0 and day 274 of biological treatment was shaken with n-butanol with vortex mixing at room temperature to determine the bioavailable fraction of contaminants. To establish total concentrations, parts of the same samples were extracted using an accelerated solvent extractor (ASE) with toluene at 100 degrees C. The extracts were tested as inducers of AhR-dependent luciferase activity in the CALUX assay and for DNA breakage potential in the Comet bioassay. RESULTS: The chemical analysis of the toluene extracts indicated slow degradation rates and the CALUX assay indicated high levels of AhR agonists in the same extracts. Compared to day 0, the bioavailable fractions showed no decrease in AhR agonist activity during the treatment but rather an up-going trend, which was supported by increasing levels of PAHs and an increased effect in the Comet bioassay after 274 days. The bio-TEQs calculated using the CALUX assay were higher than the TEQs calculated from chemical analysis in both extracts, indicating that there are additional toxic PAHs in both extracts that are not included in the chemically derived TEQ. DISCUSSION: The response in the CALUX and the Comet bioassays as well as the chemical analysis indicate that the soil might be more toxic to organisms living in soil after 274 days of treatment than in the untreated soil, due to the release of previously sorbed PAHs and possibly also metabolic formation of novel toxicants. CONCLUSIONS: Our results put focus on the issue of slow degradation rates and bioavailability of PAHs during large-scale bioremediation treatments. The release of sorbed PAHs at the investigated PAH-contaminated site seemed to be faster than the degradation rate, which demonstrates the importance of considering the bioavailable fraction of contaminants during a bioremediation process. RECOMMENDATIONS AND PERSPECTIVES: It has to be ensured that soft remediation methods like biodegradation or the natural remediation approach do not result in the mobilization of toxic compounds including more mobile degradation products. For PAH-contaminated sites this cannot be assured merely by monitoring the 16 target PAHs. The combined use of a battery of biotests for different types of PAH effects such as the CALUX and the Comet assay together with bioavailability extraction methods may be a useful screening tool of bioremediation processes of PAH-contaminated soil and contribute to a more accurate risk assessment. If the bioremediation causes a release of bound PAHs that are left undegraded in an easily extracted fraction, the soil may be more toxic to organisms living in the soil as a result of the treatment. A prolonged treatment time may be one way to reduce the risk of remaining mobile PAHs. In critical cases, the remediation concept might have to be changed to ex situ remediation methods.
Assuntos
Mutagênicos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/química , Receptores de Hidrocarboneto Arílico/agonistas , Poluentes do Solo/química , Animais , Biodegradação Ambiental , Bioensaio , Disponibilidade Biológica , Linhagem Celular , Ensaio Cometa , Oncorhynchus mykiss , Ratos , Solo/análiseRESUMO
In this study, we examined 31 samples of varying chemical composition, including samples of soils from gasworks, coke production sites, and sites where wood preservatives were heavily used; ash and soot from municipal solid waste incinerators; antiskid sand; and dust from areas with heavy road traffic. The samples were comprehensively chemically characterized, especially their polycyclic aromatic compound contents, using gas chromatography-time-of-flight mass spectrometry, whereas their biological effects were assessed using dehydrogenase activity, root growth (Hordeum vulgare), reproduction of springtails (Folsomia candida), algal growth (Desmodesmus subspicatus), germinability (Sinapis alba), Vibrio fischeri, DR-CALUX, and Ames Salmonella assays. The number of compounds detected in the samples ranged from 123 to 527. Using the multivariate regression technique of partial-least-squares projections to latent structures, it was possible to find individual compounds that exhibited strong correlations with the different biological responses. Some of the results, however, indicate that a broader chemical characterization may be needed to identify all the compounds that may cause the measured biological responses.
Assuntos
Poluentes Ambientais/toxicidade , Cromatografia Gasosa-Espectrometria de Massas/métodos , Análise MultivariadaRESUMO
We consider the problem of discriminating between states of a specified set with maximum confidence. For a set of linearly independent states unambiguous discrimination is possible if we allow for the possibility of an inconclusive result. For linearly dependent sets an analogous measurement is one which allows us to be as confident as possible that when a given state is identified on the basis of the measurement result, it is indeed the correct state.