Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Neuroimage ; 283: 120397, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37820862

RESUMO

Diffusion-weighted MRI (dMRI) is a medical imaging method that can be used to investigate the brain microstructure and structural connections between different brain regions. The method, however, requires relatively complex data processing frameworks and analysis pipelines. Many of these approaches are vulnerable to signal dropout artefacts that can originate from subjects moving their head during the scan. To combat these artefacts and eliminate such outliers, researchers have proposed two approaches: to replace outliers or to downweight outliers during modelling and analysis. With the rising interest in dMRI for clinical research, these types of corrections are increasingly important. Therefore, we set out to investigate the differences between outlier replacement and weighting approaches to help the dMRI community to select the best tool for their data processing pipelines. We evaluated dMRI motion correction registration and single tensor model fit pipelines using Gaussian Process and Spherical Harmonic based replacement approaches and outlier downweighting using highly realistic whole-brain simulations. As a proof of concept, we applied these approaches to dMRI infant data sets that contained varying numbers of dropout artefacts. Based on our results, we concluded that the Gaussian Process based outlier replacement provided similar tensor fit results to Gaussian Process based outlier detection and downweighting. Therefore, if only the least-squares estimate of the single tensor model is of interest, our recommendation is to use outlier replacement. However, outlier downweighting can potentially provide a more accurate estimate of the model precision which could be relevant for applications such as probabilistic tractoraphy.


Assuntos
Algoritmos , Imagem de Difusão por Ressonância Magnética , Humanos , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Artefatos , Análise dos Mínimos Quadrados
2.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37546835

RESUMO

Development of diffusion MRI (dMRI) denoising approaches has experienced considerable growth over the last years. As noise can inherently reduce accuracy and precision in measurements, its effects have been well characterised both in terms of uncertainty increase in dMRI-derived features and in terms of biases caused by the noise floor, the smallest measurable signal given the noise level. However, gaps in our knowledge still exist in objectively characterising dMRI denoising approaches in terms of both of these effects and assessing their efficacy. In this work, we reconsider what a denoising method should and should not do and we accordingly define criteria to characterise the performance. We propose a comprehensive set of evaluations, including i) benefits in improving signal quality and reducing noise variance, ii) gains in reducing biases and the noise floor and improving, iii) preservation of spatial resolution, iv) agreement of denoised data against a gold standard, v) gains in downstream parameter estimation (precision and accuracy), vi) efficacy in enabling noise-prone applications, such as ultra-high-resolution imaging. We further provide newly acquired complex datasets (magnitude and phase) with multiple repeats that sample different SNR regimes to highlight performance differences under different scenarios. Without loss of generality, we subsequently apply a number of exemplar patch-based denoising algorithms to these datasets, including Non-Local Means, Marchenko-Pastur PCA (MPPCA) in the magnitude and complex domain and NORDIC, and compare them with respect to the above criteria and against a gold standard complex average of multiple repeats. We demonstrate that all tested denoising approaches reduce noise-related variance, but not always biases from the elevated noise floor. They all induce a spatial resolution penalty, but its extent can vary depending on the method and the implementation. Some denoising approaches agree with the gold standard more than others and we demonstrate challenges in even defining such a standard. Overall, we show that dMRI denoising performed in the complex domain is advantageous to magnitude domain denoising with respect to all the above criteria.

3.
Magn Reson Med ; 90(4): 1484-1501, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37317708

RESUMO

PURPOSE: To develop a new method for high-fidelity, high-resolution 3D multi-slab diffusion MRI with minimal distortion and boundary slice aliasing. METHODS: Our method modifies 3D multi-slab imaging to integrate blip-reversed acquisitions for distortion correction and oversampling in the slice direction (kz ) for reducing boundary slice aliasing. Our aim is to achieve robust acceleration to keep the scan time the same as conventional 3D multi-slab acquisitions, in which data are acquired with a single direction of blip traversal and without kz -oversampling. We employ a two-stage reconstruction. In the first stage, the blip-up/down images are respectively reconstructed and analyzed to produce a field map for each diffusion direction. In the second stage, the blip-reversed data and the field map are incorporated into a joint reconstruction to produce images that are corrected for distortion and boundary slice aliasing. RESULTS: We conducted experiments at 7T in six healthy subjects. Stage 1 reconstruction produces images from highly under-sampled data (R = 7.2) with sufficient quality to provide accurate field map estimation. Stage 2 joint reconstruction substantially reduces distortion artifacts with comparable quality to fully-sampled blip-reversed results (2.4× scan time). Whole-brain in-vivo results acquired at 1.22 mm and 1.05 mm isotropic resolutions demonstrate improved anatomical fidelity compared to conventional 3D multi-slab imaging. Data demonstrate good reliability and reproducibility of the proposed method over multiple subjects. CONCLUSION: The proposed acquisition and reconstruction framework provide major reductions in distortion and boundary slice aliasing for 3D multi-slab diffusion MRI without increasing the scan time, which can potentially produce high-quality, high-resolution diffusion MRI.


Assuntos
Encéfalo , Imagem de Difusão por Ressonância Magnética , Humanos , Reprodutibilidade dos Testes , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Artefatos , Aceleração , Processamento de Imagem Assistida por Computador/métodos , Imagem Ecoplanar/métodos , Algoritmos
4.
Magn Reson Med ; 89(6): 2376-2390, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36656151

RESUMO

PURPOSE: To assess the accuracy of morphing an established reference electromagnetic head model to a subject-specific morphometry for the estimation of specific absorption rate (SAR) in 7T parallel-transmit (pTx) MRI. METHODS: Synthetic T1 -weighted MR images were created from three high-resolution open-source electromagnetic head voxel models. The accuracy of morphing a "reference" (multimodal image-based detailed anatomical [MIDA]) electromagnetic model into a different subject's native space (Duke and Ella) was compared. Both linear and nonlinear registration methods were evaluated. Maximum 10-g averaged SAR was estimated for circularly polarized mode and for 5000 random RF shim sets in an eight-channel transmit head coil, and comparison made between the morphed MIDA electromagnetic models and the native Duke and Ella electromagnetic models, respectively. RESULTS: The averaged error in maximum 10-g averaged SAR estimation across pTx MRI shim sets between the MIDA and the Duke target model was reduced from 17.5% with only rigid-body registration, to 11.8% when affine linear registration was used, and further reduced to 10.7% when nonlinear registration was used. The corresponding figures for the Ella model were 16.7%, 11.2%, and 10.1%. CONCLUSION: We found that morphometry accounts for up to half of the subject-specific differences in pTx SAR. Both linear and nonlinear morphing of an electromagnetic model into a target subject improved SAR agreement by better matching head size, morphometry, and position. However, differences remained, likely arising from details in tissue composition estimation. Thus, the uncertainty of the head morphometry and tissue composition may need to be considered separately to achieve personalized SAR estimation.


Assuntos
Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas
5.
Neuroimage ; 264: 119701, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36283542

RESUMO

Accurate spatial alignment of MRI data acquired across multiple contrasts in the same subject is often crucial for data analysis and interpretation, but can be challenging in the presence of geometric distortions that differ between acquisitions. It is well known that single-shot echo-planar imaging (EPI) acquisitions suffer from distortion in the phase-encoding direction due to B0 field inhomogeneities arising from tissue magnetic susceptibility differences and other sources, however there can be distortion in other encoding directions as well in the presence of strong field inhomogeneities. High-resolution ultrahigh-field MRI typically uses low bandwidth in the slice-encoding direction to acquire thin slices and, when combined with the pronounced B0 inhomogeneities, is prone to an additional geometric distortion in the slice direction as well. Here we demonstrate the presence of this slice distortion in high-resolution 7T EPI acquired with a novel pulse sequence allowing for the reversal of the slice-encoding gradient polarity that enables the acquisition of pairs of images with equal magnitudes of distortion in the slice direction but with opposing polarities. We also show that the slice-direction distortion can be corrected using gradient reversal-based method applying the same software used for conventional corrections of phase-encoding direction distortion.


Assuntos
Imagem Ecoplanar , Imageamento por Ressonância Magnética , Humanos , Imagem Ecoplanar/métodos , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Artefatos , Algoritmos , Encéfalo/diagnóstico por imagem
6.
Front Neurosci ; 16: 886772, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677357

RESUMO

The Developing Human Connectome Project has created a large open science resource which provides researchers with data for investigating typical and atypical brain development across the perinatal period. It has collected 1228 multimodal magnetic resonance imaging (MRI) brain datasets from 1173 fetal and/or neonatal participants, together with collateral demographic, clinical, family, neurocognitive and genomic data from 1173 participants, together with collateral demographic, clinical, family, neurocognitive and genomic data. All subjects were studied in utero and/or soon after birth on a single MRI scanner using specially developed scanning sequences which included novel motion-tolerant imaging methods. Imaging data are complemented by rich demographic, clinical, neurodevelopmental, and genomic information. The project is now releasing a large set of neonatal data; fetal data will be described and released separately. This release includes scans from 783 infants of whom: 583 were healthy infants born at term; as well as preterm infants; and infants at high risk of atypical neurocognitive development. Many infants were imaged more than once to provide longitudinal data, and the total number of datasets being released is 887. We now describe the dHCP image acquisition and processing protocols, summarize the available imaging and collateral data, and provide information on how the data can be accessed.

7.
Sci Adv ; 8(15): eabl5794, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35417242

RESUMO

Reproduction and survival in most primate species reflects management of both competitive and cooperative relationships. Here, we investigated the links between neuroanatomy and sociality in free-ranging rhesus macaques. In adults, the number of social partners predicted the volume of the mid-superior temporal sulcus and ventral-dysgranular insula, implicated in social decision-making and empathy, respectively. We found no link between brain structure and other key social variables such as social status or indirect connectedness in adults, nor between maternal social networks or status and dependent infant brain structure. Our findings demonstrate that the size of specific brain structures varies with the number of direct affiliative social connections and suggest that this relationship may arise during development. These results reinforce proposed links between social network size, biological success, and the expansion of specific brain circuits.


Assuntos
Encéfalo , Comportamento Social , Animais , Encéfalo/diagnóstico por imagem , Humanos , Macaca mulatta , Lobo Temporal
8.
Nature ; 604(7907): 697-707, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35255491

RESUMO

There is strong evidence of brain-related abnormalities in COVID-191-13. However, it remains unknown whether the impact of SARS-CoV-2 infection can be detected in milder cases, and whether this can reveal possible mechanisms contributing to brain pathology. Here we investigated brain changes in 785 participants of UK Biobank (aged 51-81 years) who were imaged twice using magnetic resonance imaging, including 401 cases who tested positive for infection with SARS-CoV-2 between their two scans-with 141 days on average separating their diagnosis and the second scan-as well as 384 controls. The availability of pre-infection imaging data reduces the likelihood of pre-existing risk factors being misinterpreted as disease effects. We identified significant longitudinal effects when comparing the two groups, including (1) a greater reduction in grey matter thickness and tissue contrast in the orbitofrontal cortex and parahippocampal gyrus; (2) greater changes in markers of tissue damage in regions that are functionally connected to the primary olfactory cortex; and (3) a greater reduction in global brain size in the SARS-CoV-2 cases. The participants who were infected with SARS-CoV-2 also showed on average a greater cognitive decline between the two time points. Importantly, these imaging and cognitive longitudinal effects were still observed after excluding the 15 patients who had been hospitalised. These mainly limbic brain imaging results may be the in vivo hallmarks of a degenerative spread of the disease through olfactory pathways, of neuroinflammatory events, or of the loss of sensory input due to anosmia. Whether this deleterious effect can be partially reversed, or whether these effects will persist in the long term, remains to be investigated with additional follow-up.


Assuntos
Encéfalo , COVID-19 , Idoso , Idoso de 80 Anos ou mais , Bancos de Espécimes Biológicos , Encéfalo/diagnóstico por imagem , Encéfalo/virologia , COVID-19/patologia , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , SARS-CoV-2 , Olfato , Reino Unido/epidemiologia
9.
Cereb Cortex ; 32(8): 1608-1624, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-34518890

RESUMO

Comparative neuroimaging has been used to identify changes in white matter architecture across primate species phylogenetically close to humans, but few have compared the phylogenetically distant species. Here, we acquired postmortem diffusion imaging data from ring-tailed lemurs (Lemur catta), black-capped squirrel monkeys (Saimiri boliviensis), and rhesus macaques (Macaca mulatta). We were able to establish templates and surfaces allowing us to investigate sulcal, cortical, and white matter anatomy. The results demonstrate an expansion of the frontal projections of the superior longitudinal fasciculus complex in squirrel monkeys and rhesus macaques compared to ring-tailed lemurs, which correlates with sulcal anatomy and the lemur's smaller prefrontal granular cortex. The connectivity of the ventral pathway in the parietal region is also comparatively reduced in ring-tailed lemurs, with the posterior projections of the inferior longitudinal fasciculus not extending toward parietal cortical areas as in the other species. In the squirrel monkeys we note a very specific occipito-parietal anatomy that is apparent in their surface anatomy and the expansion of the posterior projections of the optical radiation. Our study supports the hypothesis that the connectivity of the prefrontal-parietal regions became relatively elaborated in the simian lineage after divergence from the prosimian lineage.


Assuntos
Substância Branca , Animais , Mapeamento Encefálico/métodos , Macaca mulatta , Vias Neurais/anatomia & histologia , Vias Neurais/diagnóstico por imagem , Lobo Parietal , Substância Branca/anatomia & histologia , Substância Branca/diagnóstico por imagem
10.
medRxiv ; 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-34189535

RESUMO

There is strong evidence for brain-related abnormalities in COVID-19 1-13 . It remains unknown however whether the impact of SARS-CoV-2 infection can be detected in milder cases, and whether this can reveal possible mechanisms contributing to brain pathology. Here, we investigated brain changes in 785 UK Biobank participants (aged 51-81) imaged twice, including 401 cases who tested positive for infection with SARS-CoV-2 between their two scans, with 141 days on average separating their diagnosis and second scan, and 384 controls. The availability of pre-infection imaging data reduces the likelihood of pre-existing risk factors being misinterpreted as disease effects. We identified significant longitudinal effects when comparing the two groups, including: (i) greater reduction in grey matter thickness and tissue-contrast in the orbitofrontal cortex and parahippocampal gyrus, (ii) greater changes in markers of tissue damage in regions functionally-connected to the primary olfactory cortex, and (iii) greater reduction in global brain size. The infected participants also showed on average larger cognitive decline between the two timepoints. Importantly, these imaging and cognitive longitudinal effects were still seen after excluding the 15 cases who had been hospitalised. These mainly limbic brain imaging results may be the in vivo hallmarks of a degenerative spread of the disease via olfactory pathways, of neuroinflammatory events, or of the loss of sensory input due to anosmia. Whether this deleterious impact can be partially reversed, or whether these effects will persist in the long term, remains to be investigated with additional follow up.

11.
Front Neurol ; 12: 753284, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777224

RESUMO

SARS-CoV-2 infection has been shown to damage multiple organs, including the brain. Multiorgan MRI can provide further insight on the repercussions of COVID-19 on organ health but requires a balance between richness and quality of data acquisition and total scan duration. We adapted the UK Biobank brain MRI protocol to produce high-quality images while being suitable as part of a post-COVID-19 multiorgan MRI exam. The analysis pipeline, also adapted from UK Biobank, includes new imaging-derived phenotypes (IDPs) designed to assess the possible effects of COVID-19. A first application of the protocol and pipeline was performed in 51 COVID-19 patients post-hospital discharge and 25 controls participating in the Oxford C-MORE study. The protocol acquires high resolution T1, T2-FLAIR, diffusion weighted images, susceptibility weighted images, and arterial spin labelling data in 17 min. The automated imaging pipeline derives 1,575 IDPs, assessing brain anatomy (including olfactory bulb volume and intensity) and tissue perfusion, hyperintensities, diffusivity, and susceptibility. In the C-MORE data, IDPs related to atrophy, small vessel disease and olfactory bulbs were consistent with clinical radiology reports. Our exploratory analysis tentatively revealed some group differences between recovered COVID-19 patients and controls, across severity groups, but not across anosmia groups. Follow-up imaging in the C-MORE study is currently ongoing, and this protocol is now being used in other large-scale studies. The protocol, pipeline code and data are openly available and will further contribute to the understanding of the medium to long-term effects of COVID-19.

12.
Cell Rep ; 37(4): 109890, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34706229

RESUMO

White matter (WM) plasticity supports skill learning and memory. Up- and downregulation of brain activity in animal models lead to WM alterations. But can bidirectional brain-activity manipulation change WM structure in the adult human brain? We employ fMRI neurofeedback to endogenously and directionally modulate activity in the sensorimotor cortices. Diffusion tensor imaging is acquired before and after two separate conditions, involving regulating sensorimotor activity either up or down using real or sham neurofeedback (n = 20 participants × 4 scans). We report rapid opposing changes in corpus callosum microstructure that depend on the direction of activity modulation. Our findings show that fMRI neurofeedback can be used to endogenously and directionally alter not only brain-activity patterns but also WM pathways connecting the targeted brain areas. The level of associated brain activity in connected areas is therefore a possible mediator of previously described learning-related changes in WM.


Assuntos
Imagem de Tensor de Difusão , Neurorretroalimentação , Córtex Sensório-Motor , Substância Branca , Adulto , Humanos , Masculino , Córtex Sensório-Motor/diagnóstico por imagem , Córtex Sensório-Motor/fisiopatologia , Substância Branca/diagnóstico por imagem , Substância Branca/fisiopatologia
13.
Neuroimage ; 244: 118543, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34508893

RESUMO

The Human Connectome Project (HCP) was launched in 2010 as an ambitious effort to accelerate advances in human neuroimaging, particularly for measures of brain connectivity; apply these advances to study a large number of healthy young adults; and freely share the data and tools with the scientific community. NIH awarded grants to two consortia; this retrospective focuses on the "WU-Minn-Ox" HCP consortium centered at Washington University, the University of Minnesota, and University of Oxford. In just over 6 years, the WU-Minn-Ox consortium succeeded in its core objectives by: 1) improving MR scanner hardware, pulse sequence design, and image reconstruction methods, 2) acquiring and analyzing multimodal MRI and MEG data of unprecedented quality together with behavioral measures from more than 1100 HCP participants, and 3) freely sharing the data (via the ConnectomeDB database) and associated analysis and visualization tools. To date, more than 27 Petabytes of data have been shared, and 1538 papers acknowledging HCP data use have been published. The "HCP-style" neuroimaging paradigm has emerged as a set of best-practice strategies for optimizing data acquisition and analysis. This article reviews the history of the HCP, including comments on key events and decisions associated with major project components. We discuss several scientific advances using HCP data, including improved cortical parcellations, analyses of connectivity based on functional and diffusion MRI, and analyses of brain-behavior relationships. We also touch upon our efforts to develop and share a variety of associated data processing and analysis tools along with detailed documentation, tutorials, and an educational course to train the next generation of neuroimagers. We conclude with a look forward at opportunities and challenges facing the human neuroimaging field from the perspective of the HCP consortium.


Assuntos
Conectoma/história , Encéfalo/diagnóstico por imagem , Bases de Dados Factuais , Imagem de Difusão por Ressonância Magnética , Feminino , História do Século XXI , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Neuroimagem , Estudos Retrospectivos
15.
J Neural Transm (Vienna) ; 128(5): 659-670, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33779812

RESUMO

Deep brain stimulation of the pedunculopontine nucleus is a promising surgical procedure for the treatment of Parkinsonian gait and balance dysfunction. It has, however, produced mixed clinical results that are poorly understood. We used tractography with the aim to rationalise this heterogeneity. A cohort of eight patients with postural instability and gait disturbance (Parkinson's disease subtype) underwent pre-operative structural and diffusion MRI, then progressed to deep brain stimulation targeting the pedunculopontine nucleus. Pre-operative and follow-up assessments were carried out using the Gait and Falls Questionnaire, and Freezing of Gait Questionnaire. Probabilistic diffusion tensor tractography was carried out between the stimulating electrodes and both cortical and cerebellar regions of a priori interest. Cortical surface reconstructions were carried out to measure cortical thickness in relevant areas. Structural connectivity between stimulating electrode and precentral gyrus (r = 0.81, p = 0.01), Brodmann areas 1 (r = 0.78, p = 0.02) and 2 (r = 0.76, p = 0.03) were correlated with clinical improvement. A negative correlation was also observed for the superior cerebellar peduncle (r = -0.76, p = 0.03). Lower cortical thickness of the left parietal lobe and bilateral premotor cortices were associated with greater pre-operative severity of symptoms. Both motor and sensory structural connectivity of the stimulated surgical target characterises the clinical benefit, or lack thereof, from surgery. In what is a challenging region of brainstem to effectively target, these results provide insights into how this can be better achieved. The mechanisms of action are likely to have both motor and sensory components, commensurate with the probable nature of the underlying dysfunction.


Assuntos
Estimulação Encefálica Profunda , Transtornos Neurológicos da Marcha , Doença de Parkinson , Núcleo Tegmental Pedunculopontino , Marcha , Transtornos Neurológicos da Marcha/diagnóstico por imagem , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/terapia , Humanos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/terapia , Núcleo Tegmental Pedunculopontino/diagnóstico por imagem
16.
Brain ; 144(7): 2199-2213, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-33734321

RESUMO

The Developing Human Connectome Project is an Open Science project that provides the first large sample of neonatal functional MRI data with high temporal and spatial resolution. These data enable mapping of intrinsic functional connectivity between spatially distributed brain regions under normal and adverse perinatal circumstances, offering a framework to study the ontogeny of large-scale brain organization in humans. Here, we characterize in unprecedented detail the maturation and integrity of resting state networks (RSNs) at term-equivalent age in 337 infants (including 65 born preterm). First, we applied group independent component analysis to define 11 RSNs in term-born infants scanned at 43.5-44.5 weeks postmenstrual age (PMA). Adult-like topography was observed in RSNs encompassing primary sensorimotor, visual and auditory cortices. Among six higher-order, association RSNs, analogues of the adult networks for language and ocular control were identified, but a complete default mode network precursor was not. Next, we regressed the subject-level datasets from an independent cohort of infants scanned at 37-43.5 weeks PMA against the group-level RSNs to test for the effects of age, sex and preterm birth. Brain mapping in term-born infants revealed areas of positive association with age across four of six association RSNs, indicating active maturation in functional connectivity from 37 to 43.5 weeks PMA. Female infants showed increased connectivity in inferotemporal regions of the visual association network. Preterm birth was associated with striking impairments of functional connectivity across all RSNs in a dose-dependent manner; conversely, connectivity of the superior parietal lobules within the lateral motor network was abnormally increased in preterm infants, suggesting a possible mechanism for specific difficulties such as developmental coordination disorder, which occur frequently in preterm children. Overall, we found a robust, modular, symmetrical functional brain organization at normal term age. A complete set of adult-equivalent primary RSNs is already instated, alongside emerging connectivity in immature association RSNs, consistent with a primary-to-higher order ontogenetic sequence of brain development. The early developmental disruption imposed by preterm birth is associated with extensive alterations in functional connectivity.


Assuntos
Encéfalo/anatomia & histologia , Conectoma , Rede Nervosa/anatomia & histologia , Vias Neurais/anatomia & histologia , Feminino , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Imageamento por Ressonância Magnética , Masculino , Neurogênese/fisiologia
17.
Commun Biol ; 4(1): 54, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420330

RESUMO

The paracingulate sulcus -PCGS- has been considered for a long time to be specific to the human brain. Its presence/absence has been discussed in relation to interindividual variability of personality traits and cognitive abilities. Recently, a putative PCGS has been observed in chimpanzee brains. To demonstrate that this newly discovered sulcus is the homologue of the PCGS in the human brain, we analyzed cytoarchitectonic and resting-state functional magnetic resonance imaging data in chimpanzee brains which did or did not display a PCGS. The results show that the organization of the mid-cingulate cortex of the chimpanzee brain is comparable to that of the human brain, both cytoarchitectonically and in terms of functional connectivity with the lateral frontal cortex. These results demonstrate that the PCGS is not human-specific but is a shared feature of the primate brain since at least the last common ancestor to humans and great apes ~6 mya.


Assuntos
Lobo Frontal/anatomia & histologia , Pan troglodytes/anatomia & histologia , Animais , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/fisiologia , Humanos , Imageamento por Ressonância Magnética , Pan troglodytes/fisiologia
18.
J Neurosci ; 41(5): 1092-1104, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33436528

RESUMO

The World Health Organization promotes physical exercise and a healthy lifestyle as means to improve youth development. However, relationships between physical lifestyle and human brain development are not fully understood. Here, we asked whether a human brain-physical latent mode of covariation underpins the relationship between physical activity, fitness, and physical health measures with multimodal neuroimaging markers. In 50 12-year old school pupils (26 females), we acquired multimodal whole-brain MRI, characterizing brain structure, microstructure, function, myelin content, and blood perfusion. We also acquired physical variables measuring objective fitness levels, 7 d physical activity, body mass index, heart rate, and blood pressure. Using canonical correlation analysis, we unravel a latent mode of brain-physical covariation, independent of demographics, school, or socioeconomic status. We show that MRI metrics with greater involvement in this mode also showed spatially extended patterns across the brain. Specifically, global patterns of greater gray matter perfusion, volume, cortical surface area, greater white matter extra-neurite density, and resting state networks activity covaried positively with measures reflecting a physically active phenotype (high fit, low sedentary individuals). Showing that a physically active lifestyle is linked with systems-level brain MRI metrics, these results suggest widespread associations relating to several biological processes. These results support the notion of close brain-body relationships and underline the importance of investigating modifiable lifestyle factors not only for physical health but also for brain health early in adolescence.SIGNIFICANCE STATEMENT An active lifestyle is key for healthy development. In this work, we answer the following question: How do brain neuroimaging markers relate with young adolescents' level of physical activity, fitness, and physical health? Combining advanced whole-brain multimodal MRI metrics with computational approaches, we show a robust relationship between physically active lifestyles and spatially extended, multimodal brain imaging-derived phenotypes. Suggesting a wider effect on brain neuroimaging metrics than previously thought, this work underlies the importance of studying physical lifestyle, as well as other brain-body relationships in an effort to foster brain health at this crucial stage in development.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Exercício Físico/fisiologia , Estilo de Vida Saudável/fisiologia , Imagem Multimodal/métodos , Acelerometria/métodos , Acelerometria/tendências , Adolescente , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/tendências , Masculino , Imagem Multimodal/tendências
19.
EClinicalMedicine ; 31: 100683, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33490928

RESUMO

BACKGROUND: The medium-term effects of Coronavirus disease (COVID-19) on organ health, exercise capacity, cognition, quality of life and mental health are poorly understood. METHODS: Fifty-eight COVID-19 patients post-hospital discharge and 30 age, sex, body mass index comorbidity-matched controls were enrolled for multiorgan (brain, lungs, heart, liver and kidneys) magnetic resonance imaging (MRI), spirometry, six-minute walk test, cardiopulmonary exercise test (CPET), quality of life, cognitive and mental health assessments. FINDINGS: At 2-3 months from disease-onset, 64% of patients experienced breathlessness and 55% reported fatigue. On MRI, abnormalities were seen in lungs (60%), heart (26%), liver (10%) and kidneys (29%). Patients exhibited changes in the thalamus, posterior thalamic radiations and sagittal stratum on brain MRI and demonstrated impaired cognitive performance, specifically in the executive and visuospatial domains. Exercise tolerance (maximal oxygen consumption and ventilatory efficiency on CPET) and six-minute walk distance were significantly reduced. The extent of extra-pulmonary MRI abnormalities and exercise intolerance correlated with serum markers of inflammation and acute illness severity. Patients had a higher burden of self-reported symptoms of depression and experienced significant impairment in all domains of quality of life compared to controls (p<0.0001 to 0.044). INTERPRETATION: A significant proportion of patients discharged from hospital reported symptoms of breathlessness, fatigue, depression and had limited exercise capacity. Persistent lung and extra-pulmonary organ MRI findings are common in patients and linked to inflammation and severity of acute illness. FUNDING: NIHR Oxford and Oxford Health Biomedical Research Centres, British Heart Foundation Centre for Research Excellence, UKRI, Wellcome Trust, British Heart Foundation.

20.
Neuroimage ; 224: 117002, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32502668

RESUMO

Dealing with confounds is an essential step in large cohort studies to address problems such as unexplained variance and spurious correlations. UK Biobank is a powerful resource for studying associations between imaging and non-imaging measures such as lifestyle factors and health outcomes, in part because of the large subject numbers. However, the resulting high statistical power also raises the sensitivity to confound effects, which therefore have to be carefully considered. In this work we describe a set of possible confounds (including non-linear effects and interactions that researchers may wish to consider for their studies using such data). We include descriptions of how we can estimate the confounds, and study the extent to which each of these confounds affects the data, and the spurious correlations that may arise if they are not controlled. Finally, we discuss several issues that future studies should consider when dealing with confounds.


Assuntos
Bancos de Espécimes Biológicos , Encéfalo , Neuroimagem , Processamento Eletrônico de Dados , Cabeça , Humanos , Neuroimagem/métodos , Fatores de Tempo , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA