Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Phys Chem Chem Phys ; 26(22): 16017-16025, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38775259

RESUMO

The thermal conductivity κ of cyclopentane clathrate hydrate (CP CH) of type II was measured at temperatures down to 100 K and at pressures up to 1.3 GPa. The results show that CP CH displays amorphous-like κ characteristic of many crystalline clathrate hydrates, e.g., tetrahydrofuran (THF) CH. The magnitude of κ is 0.47 W m-1 K-1 near the melting point of 280 K at atmospheric pressure, and it is almost independent of pressure and temperature T: ln κ = -0.621-40.1/T at atmospheric pressure (in SI-units). This is slightly less than κ of type II CHs of water-miscible solvents such as THF. Intriguingly, unlike other water-rich type II clathrate hydrates of water-miscible molecules M (M·17 H2O), CP CH does not amorphize at pressures up to 1.3 GPa at 130 K and also remains stable up to 0.5 GPa at 240 K. This shows that CP CH is mechanically more stable than the previously studied water-rich type II CHs, and suggests that repulsive forces between CP and the H2O cages increase the mechanical stability of crystalline CP CH. Moreover, we show that κ of an ice-CH mixture, which often arises for CHs that form naturally, is described by the average of the parallel and series heat conduction models to within 5% for ice contents up to 22 wt%. The findings provide a better understanding of the thermal and stability properties of clathrate hydrates for their applications such as gas storage compounds.

2.
Phys Chem Chem Phys ; 25(21): 14981-14991, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37211856

RESUMO

From crystalline tetrahydrofuran clathrate hydrate, THF-CH (THF·17H2O, cubic structure II), three distinct polyamorphs can be derived. First, THF-CH undergoes pressure-induced amorphization when pressurized to 1.3 GPa in the temperature range 77-140 K to a form which, in analogy to pure ice, may be called high-density amorphous (HDA). Second, HDA can be converted to a densified form, VHDA, upon heat-cycling at 1.8 GPa to 180 K. Decompression of VHDA to atmospheric pressure below 130 K produces the third form, recovered amorphous (RA). Results from neutron scattering experiments and molecular dynamics simulations provide a generalized picture of the structure of amorphous THF hydrates with respect to crystalline THF-CH and liquid THF·17H2O solution (∼2.5 M). Although fully amorphous, HDA is heterogeneous with two length scales for water-water correlations (less dense local water structure) and guest-water correlations (denser THF hydration structure). The hydration structure of THF is influenced by guest-host hydrogen bonding. THF molecules maintain a quasiregular array, reminiscent of the crystalline state, and their hydration structure (out to 5 Å) constitutes ∼23H2O. The local water structure in HDA is reminiscent of pure HDA-ice featuring 5-coordinated H2O. In VHDA, the hydration structure of HDA is maintained but the local water structure is densified and resembles pure VHDA-ice with 6-coordinated H2O. The hydration structure of THF in RA constitutes ∼18 H2O molecules and the water structure corresponds to a strictly 4-coordinated network, as in the liquid. Both VHDA and RA can be considered as homogeneous.

3.
Molecules ; 27(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36500490

RESUMO

The thermal conductivity, κ, of solid triphenyl phosphite was measured by using the transient hot-wire method, and its temperature and pressure dependencies were analyzed to understand heat transfer processes in the solid polymorphic phases, as well as in the glass and the exotic glacial state. Phase transformations and the structural order of the phases are discussed, and a transitional pressure-temperature diagram of triphenyl phosphite is presented. The thermal conductivity of both the crystalline and disordered states is described within the theory of two-channel heat transfer by phonons and diffusons in dielectric solids. In the glass and glacial states, the weakly temperature-dependent (glass-like) κ is described well by the term associated with heat conduction of diffusons only, and it can be represented by an Arrhenius-type function. In the crystal phases, the strongly temperature-dependent (crystal-like) κ associated with heat transfer by phonons is weakened by significant heat transfer by diffusons, and the extent of the two contributions is reflected in the temperature dependence of κ. We find that the contribution of diffusons in the crystal phases depends on pressure in the same way as that in amorphous states, thus indicating that the same mechanism is responsible for this channel of heat transfer in crystals and amorphous states.


Assuntos
Vidro , Temperatura Alta , Condutividade Térmica , Temperatura , Temperatura de Transição
4.
Phys Chem Chem Phys ; 24(34): 20064-20072, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35856694

RESUMO

Type II clathrate hydrates (CHs) with tetrahydrofuran (THF), cyclobutanone (CB) or 1,3-dioxolane (DXL) guest molecules collapse to an amorphous state near 1 GPa on pressurization below 140 K. On subsequent heating in the 0.2-0.7 GPa range, thermal conductivity and heat capacity results of the homogeneous amorphous solid show two glass transitions, first a thermally weak glass transition, GT1, near 130 K; thereafter a thermally strong glass transition, GT2, which implies a transformation to an ultraviscous liquid on heating. Here we compare the GTs of normal and deuterated samples and samples with different guest molecules. The results show that GT1 and GT2 are unaffected by deuteration of the THF guest and exchange of THF with CB or DXL, whereas the glass transition temperatures (Tgs) shift to higher temperatures on deuteration of water; Tg of GT2 increases by 2.5 K. These results imply that both GTs are associated with the water network. This is corroborated by the fact that GT2 is detected only in the state which is the amorphized CH's counterpart of expanded high density amorphous ice. The results suggest a rare transition sequence of an orientational glass transition followed by a glass to liquid transition, i.e., kinetic unfreezing of H2O reorientational and translational mobility in two distinct processes.

5.
Biomacromolecules ; 22(9): 3800-3809, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34510907

RESUMO

Considering the growing use of cellulose in various applications, knowledge and understanding of its physical properties become increasingly important. Thermal conductivity is a key property, but its variation with porosity and density is unknown, and it is not known if such a variation is affected by fiber size and temperature. Here, we determine the relationships by measurements of the thermal conductivity of cellulose fibers (CFs) and cellulose nanofibers (CNFs) derived from commercial birch pulp as a function of pressure and temperature. The results show that the thermal conductivity varies relatively weakly with density (ρsample = 1340-1560 kg m-3) and that its temperature dependence is independent of density, porosity, and fiber size for temperatures in the range 80-380 K. The universal temperature and density dependencies of the thermal conductivity of a random network of CNFs are described by a third-order polynomial function (SI-units): κCNF = (0.0787 + 2.73 × 10-3·T - 7.6749 × 10-6·T2 + 8.4637 × 10-9·T3)·(ρsample/ρ0)2, where ρ0 = 1340 kg m-3 and κCF = 1.065·κCNF. Despite a relatively high degree of crystallinity, both CF and CNF samples show amorphous-like thermal conductivity, that is, it increases with increasing temperature. This appears to be due to the nano-sized elementary fibrils of cellulose, which explains that the thermal conductivity of CNFs and CFs shows identical behavior and differs by only ca. 6%. The nano-sized fibrils effectively limit the phonon mean free path to a few nanometers for heat conduction across fibers, and it is only significantly longer for highly directed heat conduction along fibers. This feature of cellulose makes it easier to apply in applications that require low thermal conductivity combined with high strength; the weak density dependence of the thermal conductivity is a particularly useful property when the material is subjected to high loads. The results for thermal conductivity also suggest that the crystalline structures of cellulose remain stable up to at least 0.7 GPa.


Assuntos
Celulose , Nanofibras , Porosidade , Temperatura , Condutividade Térmica
6.
RSC Adv ; 11(49): 30744-30754, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-35479871

RESUMO

Three amorphous forms of Ar hydrate were produced using the crystalline clathrate hydrate Ar·6.5H2O (structure II, Fd3̄m, a ≈ 17.1 Å) as a precursor and structurally characterized by a combination of isotope substitution (36Ar) neutron diffraction and molecular dynamics (MD) simulations. The first form followed from the pressure-induced amorphization of the precursor at 1.5 GPa at 95 K and the second from isobaric annealing at 2 GPa and subsequent cooling back to 95 K. In analogy to amorphous ice, these amorphs are termed high-density amorphous (HDA) and very-high-density amorphous (VHDA), respectively. The third amorph (recovered amorphous, RA) was obtained when recovering VHDA to ambient pressure (at 95 K). The three amorphs have distinctly different structures. In HDA the distinction of the original two crystallographically different Ar guests is maintained as differently dense Ar-water hydration structures, which expresses itself in a split first diffraction peak in the neutron structure factor function. Relaxation of the local water structure during annealing produces a homogeneous hydration environment around Ar, which is accompanied with a densification by about 3%. Upon pressure release the homogeneous amorphous structure undergoes expansion by about 21%. Both VHDA and RA can be considered frozen solutions of immiscible Ar and water in which in average 15 and 11 water molecules, respectively, coordinate Ar out to 4 Å. The local water structures of HDA and VHDA Ar hydrates show some analogy to those of the corresponding amorphous ices, featuring H2O molecules in 5- and 6-fold coordination with neighboring molecules. However, they are considerably less dense. Most similarity is seen between RA and low density amorphous ice (LDA), which both feature strictly 4-coordinated H2O networks. It is inferred that, depending on the kind of clathrate structure and occupancy of cages, amorphous states produced from clathrate hydrates display variable local water structures.

7.
ACS Omega ; 5(28): 17617-17627, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32715247

RESUMO

Layered zinc hydroxides (LZHs) with the general formula (Zn2+) x (OH-)2x-my (A m-) y ·nH2O (A m- = Cl-, NO3 -, ac-, SO4 2-, etc) are considered as useful precursors for the fabrication of functional ZnO nanostructures. Here, we report the synthesis and structure characterization of the hitherto unknown "binary" representative of the LZH compound family, Zn5(OH)10·2H2O, with A m- = OH-, x = 5, y = 2, and n = 2. Zn5(OH)10·2H2O was afforded quantitatively by pressurizing mixtures of ε-Zn(OH)2 (wulfingite) and water to 1-2 GPa and applying slightly elevated temperatures, 100-200 °C. The monoclinic crystal structure was characterized from powder X-ray diffraction data (space group C2/c, a = 15.342(7) Å, b = 6.244(6) Å, c = 10.989(7) Å, ß = 100.86(1)°). It features neutral zinc hydroxide layers, composed of octahedrally and tetrahedrally coordinated Zn ions with a 3:2 ratio, in which H2O is intercalated. The interlayer d(200) distance is 7.53 Å. The H-bond structure of Zn5(OH)10·2H2O was analyzed by a combination of infrared/Raman spectroscopy, computational modeling, and neutron powder diffraction. Interlayer H2O molecules are strongly H-bonded to five surrounding OH groups and appear orientationally disordered. The decomposition of Zn5(OH)10·2H2O, which occurs thermally between 70 and 100 °C, was followed in an in situ transmission electron microscopy study and ex situ annealing experiments. It yields initially 5-15 nm sized hexagonal w-ZnO crystals, which, depending on the conditions, may intergrow to several hundred nm-large two-dimensional, flakelike crystals within the boundary of original Zn5(OH)10·2H2O particles.

8.
J Chem Phys ; 151(1): 014502, 2019 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-31272168

RESUMO

Type II clathrate hydrates (CHs) were studied by thermal and dielectric measurements. All CHs amorphize, or collapse, on pressurization to 1.3 GPa below 135 K. After heating to 160 K at 1 GPa, the stability of the amorphous states increases in a process similar to the gradual high density to very high density amorphous ice (HDA to VHDA) transition. On a subsequent pressure decrease, the amorphized CHs expand partly irreversibly similar to the gradual VHDA to expanded HDA ice transformation. After further heating at 1 GPa, weak transition features appear near the HDA to low density amorphous ice transition. The results suggest that CH nucleation sites vanish on heating to 160 K at 1 GPa and that a sluggish partial phase-separation process commences on further heating. The collapsed CHs show two glass transitions (GTs), GT1 and GT2. GT1 is weakly pressure-dependent, 12 K GPa-1, with a relaxation time of 0.3 s at 140 K and 1 GPa; it is associated with a weak heat capacity increase of 3.7 J H2O-mol-1 K-1 in a 18 K range and an activation energy of only 38 kJ mol-1 at 1 GPa. The corresponding temperature of GT2 is 159 K at 0.4 GPa with a pressure dependence of 36 K GPa-1; it shows 5.5 times larger heat capacity increase and 4 times higher activation energy than GT1. GT1 is observed also in HDA and VHDA, whereas GT2 occurs just above the crystallization temperature of expanded HDA and only within its ∼0.2-0.7 GPa stable pressure range.

9.
J Chem Phys ; 150(20): 204506, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31153163

RESUMO

The type II clathrate hydrate (CH) THF·17 H2O (THF = tetrahydrofuran) is known to amorphize on pressurization to ∼1.3 GPa in the temperature range 77-140 K. This seems to be related to the pressure induced amorphization (PIA) of hexagonal ice to high density amorphous (HDA) ice. Here, we probe the PIA of THF-d8 · 17 D2O (TDF-CD) at 130 K by in situ thermal conductivity and neutron diffraction experiments. Both methods reveal amorphization of TDF-CD between 1.1 and 1.2 GPa and densification of the amorphous state on subsequent heating from 130 to 170 K. The densification is similar to the transition of HDA to very-high-density-amorphous ice. The first diffraction peak (FDP) of the neutron structure factor function, S(Q), of amorphous TDF-CD at 130 K appeared split. This feature is considered a general phenomenon of the crystalline to amorphous transition of CHs and reflects different length scales for D-D and D-O correlations in the water network and the cavity structure around the guest. The maximum corresponding to water-water correlations relates to the position of the FDP of HDA ice at ∼1 GPa. Upon annealing, the different length scales for water-water and water-guest correlations equalize and the FDP in the S(Q) of the annealed amorph represents a single peak. The similarity of local water structures in amorphous CHs and amorphous ices at in situ conditions is confirmed from molecular dynamics simulations. In addition, these simulations show that THF guest molecules are immobilized and retain long-range correlations as in the crystal.

10.
Lakartidningen ; 1152018 11 12.
Artigo em Sueco | MEDLINE | ID: mdl-30422301

RESUMO

A national Swedish expert group has presented recommendations for sepsis risk stratification, aimed to be used on patients with suspected infections out of hospital. Based on general condition, physiological parameters, and risk factors, the patients are stratified, according to risk of ongoing or subsequent sepsis, to green light (low risk), yellow light (moderate to high risk), or red light (high risk). Initial patient management should be guided by risk group, i.e. patients with green light can in most cases return to their homes, whereas patients with red light should immediately be transferred to hospital.


Assuntos
Medição de Risco , Sepse/diagnóstico , Adulto , Gerenciamento Clínico , Humanos , Guias de Prática Clínica como Assunto , Fatores de Risco , Suécia
11.
J Chem Phys ; 149(12): 124506, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30278676

RESUMO

The effect of deuteration on the thermal conductivity κ of water, crystalline ice, and amorphous ices was studied using the pressure induced amorphization of hexagonal ice, ice Ih, to obtain the deuterated, D2O, forms of low-density amorphous (LDA), high-density amorphous (HDA), and very-high density amorphous (VHDA) ices. Upon deuteration, κ of ice Ih decreases between 3% and 4% in the 100-270 K range at ambient pressure, but the effect diminishes on densification at 130 K and vanishes just prior to amorphization near 0.8 GPa. The unusual negative value of the isothermal density ρ dependence of κ for ice Ih, g = (d ln κ/d ln ρ) T = -4.4, is less so for deuterated ice: g = -3.8. In the case of the amorphous ices and liquid water, κ of water decreases by 3.5% upon deuteration at ambient conditions, whereas κ of HDA and VHDA ices instead increases by up to 5% for pressures up to 1.2 GPa at 130 K, despite HDA's and VHDA's structural similarities with water. The results are consistent with significant heat transport by librational modes in amorphous ices as well as water, and that deuteration increases phonon-phonon scattering in crystalline ice. Heat transport by librational modes is more pronounced in D2O than in H2O at low temperatures due to a deuteration-induced redshift of librational mode frequencies. Moreover, the results show that κ of deuterated LDA ice is 4% larger than that of normal LDA at 130 K, and both forms display an unusual temperature dependence of κ, which is reminiscent of that for crystals (κ ∼ T -1), and a unique negative pressure dependence of κ, which likely is linked to local-order structural similarities to ice Ih.

12.
J Chem Phys ; 148(14): 144502, 2018 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-29655324

RESUMO

We report on the temperature, pressure, and time (T, p, and t)-dependent features of thermal conductivity, κ, of partially ordered, non-equilibrium state of C60-OG, the orientational glass of Buckminsterfullerene (at T below the orientational freezing temperature Tog) made more unstable (i) by partially depressurizing its high-p formed state to elastically expand it and (ii) by further pressurizing that state to elastically contract it. The sub-Tog effects observed on heating of C60-OG differ from those of glasses because phonon propagation depends on the ratio of two well-defined orientational states of C60 molecules and the density of the solid. A broad peak-like feature appears at T near Tog in the κ-T plots of C60-OG formed at 0.7 GPa, depressurized to 0.2 GPa and heated at 0.2 GPa, which we attribute to partial overlap of the sub-Tog and Tog features. A sub-Tog local minimum appears in the κ-T plots at T well below Tog of C60-OG formed at 0.1 GPa, pressurized to 0.5 GPa and heated at 0.5 GPa and it corresponds to the state of maximum disorder. Although Buckminsterfullerene is regarded as an orientationally disordered crystal, variation of its properties with T and p is qualitatively different from other such crystals. We discuss the findings in terms of the nature of its disorder, sensitivity of its rotational dynamics to temperature, and the absence of the Johari-Goldstein relaxation. All seem to affect the phenomenology of its glass-like transition.

13.
J Phys Chem B ; 122(15): 4376-4384, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29584946

RESUMO

Type II clathrate hydrates (CHs) M·17 H2O, with M = tetrahydrofuran (THF) or 1,3-dioxolane, are known to collapse, or amorphize, on pressurization to ∼1.3 GPa in the temperature range 77-140 K. On heating at 1 GPa, these pressure-amorphized CH states show a weak, stretched sigmoid-shaped, heat-capacity increase because of a glass transition. Here we use thermal conductivity and heat capacity measurements to show that also type II CH with M = cyclobutanone (CB) collapses on isothermal pressurization and undergoes a similar, weak, glass transition upon heating at 1 GPa. Furthermore, we reveal for both THF CH and CB CH a second, much more pronounced, glass transition at temperatures above the thermally weak glass transition on heating in the 0.2-0.7 GPa range. This result suggests the general occurrence of two glass transitions in water-rich (94 mol %) pressure-collapsed CHs. Because of a large increase in dielectric permittivity concurrently as the weak heat capacity increase, the first glass transition must be due to kinetic unfreezing of water molecules. The thermal features of the second glass transition, measured on isobaric temperature cycling, are typical of a glass-liquid-glass transition, which suggests that pressure-amorphized CHs transform reversibly to liquids.

14.
Lakartidningen ; 1152018 02 06.
Artigo em Sueco | MEDLINE | ID: mdl-29437199
15.
J Chem Phys ; 146(23): 234505, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28641442

RESUMO

We report a study of structural relaxation of high-density glasses of di-n-butyl phthalate (DBP) by measuring thermal conductivity, κ, under conditions of pressure and temperature (p,T) designed to modify both the vibrational and configurational states of a glass. Various high-density glassy states of DBP were formed by (i) cooling the liquid under a fixed high p and partially depressurizing the glass, (ii) isothermal annealing of the depressurized glass, and (iii) pressurizing the glass formed by cooling the liquid under low p. At a given low p, κ of the glass formed by cooling under high p is higher than that of the glass formed by cooling under low p, and the difference increases as glass formation p is increased. κ of the glass formed under 1 GPa is ∼20% higher at ambient p than κ of the glass formed at ambient p. On heating at low p, κ decreases until the glass to liquid transition range is reached. This is the opposite of the increase in κ observed when a glass formed under a certain p is heated under the same p. At a given high p, κ of the low-density glass formed by cooling at low p is lower than that of the high-density glass formed by cooling at that high p. On heating at high p, κ increases until the glass to liquid transition range is reached. The effects observed are due to a thermally assisted approach toward equilibrium at p different from the glass formation p. In all cases, the density, enthalpy, and entropy would change until the glasses become metastable liquids at a fixed p, thus qualitatively relating κ to variation in these properties.

16.
Lakartidningen ; 1142017 Mar 28.
Artigo em Sueco | MEDLINE | ID: mdl-28350425
17.
Lakartidningen ; 1142017 Jan 24.
Artigo em Sueco | MEDLINE | ID: mdl-28117872
18.
Lakartidningen ; 1142017 11 07.
Artigo em Sueco | MEDLINE | ID: mdl-29292922
19.
J Chem Phys ; 145(20): 204506, 2016 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-27908124

RESUMO

The vibrational state of a glass is naturally incompatible with its configurational state, which makes the glass structurally unstable. When a glass is kept at constant temperature, both the vibrational and configurational states of a glass change with time until it becomes metastable (equilibrium) liquid and the two states become compatible. The process, known as structural relaxation, occurs at a progressively higher rate during heating, and the properties of a glass change accordingly. We add to this incompatibility by depressurizing a glass that had been formed by cooling a liquid under a high pressure, p, and then investigate the effects of the added incompatibility by studying thermal conductivity, κ, and the heat capacity per unit volume ρCp of the depressurized glass. We use glycerol for the purpose and study first the changes in the features of κ and of ρCp during glass formation on cooling under a set of different p. We then partially depressurize the glass and study the effect of the p-induced instability on the features of κ and ρCp as the glass is isobarically heated to the liquid state. At a given low p, the glass configuration that was formed by cooling at high-p had a higher κ than the glass configuration that was formed by cooling at a low p. The difference is more when the glass is formed at a higher p and/or is depressurized to a lower p. On heating at a low p, its κ decreases before its glass-liquid transition range is reached. The effect is the opposite of the increase in κ observed on heating a glass at the same p under which it was formed. It is caused by thermally assisted loss of the added incompatibility of configurational and vibrational states of a high-p formed glass kept at low p. If a glass formed under a low-p is pressurized and then heated under high p, it would show the opposite effect, i.e., its κ would first increase to its high p value before its glass-to-liquid transition range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA