Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 42(22): e114032, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37781951

RESUMO

Bone marrow-derived cells (BMDCs) infiltrate hypoxic tumors at a pre-angiogenic state and differentiate into mature macrophages, thereby inducing pro-tumorigenic immunity. A critical factor regulating this differentiation is activation of SREBP2-a well-known transcription factor participating in tumorigenesis progression-through unknown cellular mechanisms. Here, we show that hypoxia-induced Golgi disassembly and Golgi-ER fusion in monocytic myeloid cells result in nuclear translocation and activation of SREBP2 in a SCAP-independent manner. Notably, hypoxia-induced SREBP2 activation was only observed in an immature lineage of bone marrow-derived cells. Single-cell RNA-seq analysis revealed that SREBP2-mediated cholesterol biosynthesis was upregulated in HSCs and monocytes but not in macrophages in the hypoxic bone marrow niche. Moreover, inhibition of cholesterol biosynthesis impaired tumor growth through suppression of pro-tumorigenic immunity and angiogenesis. Thus, our findings indicate that Golgi-ER fusion regulates SREBP2-mediated metabolic alteration in lineage-specific BMDCs under hypoxia for tumor progression.


Assuntos
Monócitos , Neoplasias , Humanos , Monócitos/metabolismo , Medula Óssea , Colesterol/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Hipóxia
2.
PNAS Nexus ; 2(10): pgad306, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37822765

RESUMO

An acidic tumor microenvironment plays a critical role in tumor progression. However, understanding of metabolic reprogramming of tumors in response to acidic extracellular pH has remained elusive. Using comprehensive metabolomic analyses, we demonstrated that acidic extracellular pH (pH 6.8) leads to the accumulation of N1-acetylspermidine, a protumor metabolite, through up-regulation of the expression of spermidine/spermine acetyltransferase 1 (SAT1). Inhibition of SAT1 expression suppressed the accumulation of intra- and extracellular N1-acetylspermidine at acidic pH. Conversely, overexpression of SAT1 increased intra- and extracellular N1-acetylspermidine levels, supporting the proposal that SAT1 is responsible for accumulation of N1-acetylspermidine. While inhibition of SAT1 expression only had a minor effect on cancer cell growth in vitro, SAT1 knockdown significantly decreased tumor growth in vivo, supporting a contribution of the SAT1-N1-acetylspermidine axis to protumor immunity. Immune cell profiling revealed that inhibition of SAT1 expression decreased neutrophil recruitment to the tumor, resulting in impaired angiogenesis and tumor growth. We showed that antineutrophil-neutralizing antibodies suppressed growth in control tumors to a similar extent to that seen in SAT1 knockdown tumors in vivo. Further, a SAT1 signature was found to be correlated with poor patient prognosis. Our findings demonstrate that extracellular acidity stimulates recruitment of protumor neutrophils via the SAT1-N1-acetylspermidine axis, which may represent a metabolic target for antitumor immune therapy.

3.
Cell Rep ; 29(1): 89-103.e7, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31577958

RESUMO

Tolerance to severe tumor microenvironments, including hypoxia and nutrient starvation, is a common feature of aggressive cancer cells and can be targeted. However, metabolic alterations that support cancer cells upon nutrient starvation are not well understood. Here, by comprehensive metabolome analyses, we show that glutamine deprivation leads to phosphoethanolamine (PEtn) accumulation in cancer cells via the downregulation of PEtn cytidylyltransferase (PCYT2), a rate-limiting enzyme of phosphatidylethanolamine biosynthesis. PEtn accumulation correlated with tumor growth under nutrient starvation. PCYT2 suppression was partially mediated by downregulation of the transcription factor ELF3. Furthermore, PCYT2 overexpression reduced PEtn levels and tumor growth. In addition, PEtn accumulation and PCYT2 downregulation in human breast tumors correlated with poor prognosis. Thus, we show that glutamine deprivation leads to tumor progression by regulating PE biosynthesis via the ELF3-PCYT2 axis. Furthermore, manipulating glutamine-responsive genes could be a therapeutic approach to limit cancer progression.


Assuntos
Regulação para Baixo/genética , Etanolaminas/metabolismo , Glutamina/metabolismo , RNA Nucleotidiltransferases/genética , Inanição/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Progressão da Doença , Células HeLa , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Células MCF-7 , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-ets/genética , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA