Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38602615

RESUMO

The first line of glaucoma treatment focuses on reducing intraocular pressure (IOP) through the prescription of topical prostaglandin analogues, such as latanoprost (LAT). Topical ophthalmic medicines have low bioavailability due to their rapid elimination from the ocular surface. Nanotechnology offers innovative ways of enhancing the ocular bioavailability of antiglaucoma agents while reducing administration frequency. This study aims to combine LAT-loaded synthetic phosphatidylcholine liposomes with hyaluronic acid (0.2% w/v) and the osmoprotectants betaine (0.40% w/v) and leucine (0.90% w/v) (LAT-HA-LIP) to extend the hypotensive effect of LAT while protecting the ocular surface. LAT-HA-LIP was prepared as a mixture of 1,2-dioleoyl-sn-glycero-3-phosphocholine and 1,2-dimyristoyl-sn-glycero-3-phosphocholine, cholesterol and α-tocopherol acetate. LAT-HA-LIP exhibited high drug-loading capacity (104.52 ± 4.10%), unimodal vesicle sizes (195.14 ± 14.34 nm) and a zeta potential of -13.96 ± 0.78 mV. LAT-HA-LIP was isotonic (284.00 ± 1.41 mOsm L-1), had neutral pH (7.63 ± 0.01) and had suitable surface tension (44.07 ± 2.70 mN m-1) and viscosity (2.69 ± 0.15 mPa s-1) for topical ophthalmic administration. LAT-HA-LIP exhibited optimal in vitro tolerance in human corneal and conjunctival epithelial cells. No signs of ocular alteration or discomfort were observed when LAT-HA-LIP was instilled in albino male New Zealand rabbits. Hypotensive studies revealed that, after a single eye drop, the effect of LAT-HA-LIP lasted 24 h longer than that of a marketed formulation and that relative ocular bioavailability was almost three times higher (p < 0.001). These findings indicate the potential ocular protection and hypotensive effect LAT-HA-LIP offers in glaucoma treatment.

2.
Int J Pharm ; 649: 123653, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38036194

RESUMO

This paper aims to develop smart hydrogels based on functionalized hyaluronic acid (HA) and PLGA-PEG-PLGA (PLGA,poly-(DL-lactic-co-glycolic acid); PEG,polyethylene glycol) for use as intraocular drug-delivery platforms. Anti-inflammatory agent dexamethasone-phosphate (0.2 %w/v) was the drug selected to load on the hydrogels. Initially, different ratios of HA-aldehyde (HA-CHO) and thiolated-HA (HA-SH) were assayed, selecting as optimal concentrations 2 and 3 % (w/v), respectively. Optimized HA hydrogel formulations presented fast degradation (8 days) and drug release (91.46 ± 3.80 % in 24 h), thus being suitable for short-term intravitreal treatments. Different technology-based strategies were adopted to accelerate PLGA-PEG-PLGA water solubility, e.g. substituting PEG1500 in synthesis for higher molecular weight PEG3000 or adding cryopreserving substances to the buffer dissolution. PEG1500 was chosen to continue optimization and the final PLGA-PEG-PLGA hydrogels (PPP1500) were dissolved in trehalose or mannitol carbonate buffer. These presented more sustained release (71.77 ± 1.59 % and 73.41 ± 0.83 % in 24 h, respectively) and slower degradation (>14 days). In vitro cytotoxicity studies in the retinal-pigmented epithelial cell line (RPE-1) demonstrated good tolerance (viability values > 90 %). PLGA-PEG-PLGA hydrogels are proposed as suitable candidates for long-term intravitreal treatments. Preliminary wound healing studies with PLGA-PEG-PLGA hydrogels suggested faster proliferation at 8 h than controls.


Assuntos
Oftalmopatias , Hidrogéis , Humanos , Polietilenoglicóis , Sistemas de Liberação de Medicamentos , Poliésteres , Oftalmopatias/tratamento farmacológico , Materiais Biocompatíveis , Ácido Láctico
3.
J Liposome Res ; 33(2): 117-128, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35706400

RESUMO

Dry eye disease (DED) is a worldwide, multifactorial disease mainly caused by a deficit in tear production or increased tear evaporation with an increase in tear osmolarity and inflammation. This causes discomfort and there is a therapeutic need to restore the homeostasis of the ocular surface. The aim of the present work was to develop a biodegradable and biocompatible liposomal formulation from the synthetic phospholipids 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) that is able to reduce the effects of hypertonic stress by helping to restore the lipid layer of the tear film. Liposomes were made using the lipid film hydration method with synthetic phospholipids (10 mg/mL) with and without 0.2% HPMC. They were characterised in terms of size, osmolarity, pH, surface tension, and viscosity. Additionally, the in vitro toxicity of the formulation at 1 and 4 h in human corneal epithelial cells (hTERT-HCECs) and human conjunctival cells (IM-HConEpiC) was determined. Furthermore, osmoprotective activity was tested in a corneal model of hyperosmolar stress. In vivo acute tolerance testing was also carried out in albino New Zealand rabbits by topical application of the ophthalmic formulations every 30 min for 6 h. All the assayed formulations showed suitable physicochemical characteristics for ocular surface administration. The liposomal formulations were well-tolerated in cell cultures and showed osmoprotective activity in a hyperosmolar model. No alterations or discomfort were reported when they were topically administered in rabbits. According to the results, the osmoprotective liposomal formulations developed in this work are promising candidates for the treatment of DED.


Assuntos
Síndromes do Olho Seco , Lipossomos , Humanos , Coelhos , Animais , Fosfolipídeos , Síndromes do Olho Seco/tratamento farmacológico , Lágrimas , Fenômenos Químicos
4.
Pharmaceutics ; 14(7)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35890300

RESUMO

Glaucoma is a group of chronic irreversible neuropathies that affect the retina and the optic nerve. It is considered one of the leading causes of blindness in the world. Although it can be due to various causes, the most important modifiable risk factor is the elevated intraocular pressure (IOP). In this case, the treatment of choice consists of instilling antihypertensive formulations on the ocular surface. The chronicity of the pathology, together with the low bioavailability of the drugs that are applied on the ocular surface, make it necessary to instill the formulations very frequently, which is associated, in many cases, with the appearance of dry eye disease (DED). The objective of this work is the design of topical ocular formulations capable of treating glaucoma and, at the same time, preventing DED. For this, two liposome formulations, loaded with brimonidine or with travoprost, were Tadeveloped using synthetic phospholipids and enriched by the addition of compounds with osmoprotective activity. The proposed formulations not only presented physicochemical characteristics (size, pH, osmolarity, surface tension, and viscosity) and encapsulation efficiency values (EE% of 24.78% and ≥99.01% for brimonidine and travoprost, respectively) suitable for ocular surface administration, but also showed good tolerance in human corneal and conjunctival cell cultures, as well as an in vitro osmoprotective activity. The hypotensive effect of both liposomal formulations was evaluated in normotensive albino New Zealand rabbits, showing a faster and longer lasting reduction of intraocular pressure in comparison to the corresponding commercialized products used as control. According to these results, the hypotensive liposomal formulations combined with osmoprotective agents would result in a very promising platform for the treatment of glaucoma and the simultaneous protection of the ocular surface.

5.
Pharmaceutics ; 14(2)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35214021

RESUMO

This paper discusses the development and validation of a rapid method for the reversed phase HPLC-UV quantification of biodegradable poly(D,L-lactic-co-glycolic) acid (PLGA) microspheres co-loaded with two neuroprotective agents (dexamethasone and melatonin) (DX-MEL-MSs) to be intravitreally administered as a promising glaucoma treatment. The study was performed to validate two procedures that quantify the content of the two active substances entrapped into the polymer matrix during an encapsulation efficiency assay and the amount of drugs liberated over time during the in vitro release assay. The reversed-phase method allowed for the simultaneous determination of dexamethasone and melatonin, which were respectively detected at 240.5 and 222.7 nm. Chromatographic separation was performed using an Ascentis® C18 HPLC Column (25 cm × 4.6 mm, 5 µm) with an isocratic mobile phase composed of methanol-water (70:30, v/v) with 1.0 mL min-1 flow rate. The two procedures were validated analytically in terms of system suitability testing, specificity, linearity, precision, accuracy, sensitivity, and robustness. Both the validated procedures were applied to characterize DX-MEL-MSs and were found appropriate to quantify the drug quantities encapsulated and estimate their release profile over 10 days. The validation study designed in this work can be helpful for planning any other protocols that refer to the quantification of PLGA based drug delivery systems.

6.
Eur J Ophthalmol ; 32(5): 2994-3004, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34812085

RESUMO

OBJECTIVE: To evaluate the cytokine profile in tear and aqueous humor in primary open-angle glaucoma before trabeculectomy and correlate preoperative cytokine levels with the surgical outcome. METHODS: Prospective study. Twenty-nine patients with primary open-angle glaucoma undergoing primary trabeculectomy were included. Levels of 27 cytokines were measured in tear an aqueous humor using the Bio-Plex Pro Human Cytokine 27-Plex Immunoassay kit (Bio-Rad Laboratories, Hercules, CA, USA). RESULTS: 29 patients who underwent trabeculectomy were included and their first-year follow-up visits were recorded. Mean age was 76.0 ± 7.0 years (range 56-84), mean intraocular pressure was 18.2 ± 3.6 mmHg and mean number of topical medications was 2.3 ± 0.9. At the one-year visit, 5 patients were classified as surgical failure. In aqueous humor, preoperative cytokine levels of regulated on activation normal T cell expressed and secreted (RANTES) were significantly higher in those patients with surgical failure at one year. IL-8 in tear and interferon gamma-induced protein (IP-10) in aqueous humor correlated positively with one-year IOP reduction. No statistically significant correlations were found with changes in visual field mean defect or global peripapillary retinal nerve fiber layer thickness (all, p >0.05). CONCLUSIONS: Preoperative RANTES levels in aqueous humor as well as other cytokines could serve as useful biomarkers for trabeculectomy outcome.


Assuntos
Glaucoma de Ângulo Aberto , Trabeculectomia , Idoso , Idoso de 80 Anos ou mais , Humor Aquoso/metabolismo , Quimiocina CCL5/metabolismo , Citocinas/metabolismo , Glaucoma de Ângulo Aberto/metabolismo , Glaucoma de Ângulo Aberto/cirurgia , Humanos , Pressão Intraocular , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos
7.
Ophthalmic Res ; 65(1): 111-120, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34662885

RESUMO

INTRODUCTION: Few studies have investigated glaucoma biomarkers in aqueous humor and tear and have found elevations of proinflammatory cytokines in patients with primary open-angle glaucoma (POAG) and pseudoexfoliative glaucoma (PXG). In this study, we investigate differences in inflammatory cytokines between POAG and PXG patients to find specific disease biomarkers. METHODS: For this purpose, tear and aqueous humor samples of 14 eyes with POAG and 15 eyes with PXG undergoing cataract surgery were immunoassayed for 27 proinflammatory cytokines. The concentrations of cytokines in tear and aqueous humor and their association with clinical variables were analyzed, correlated, and compared between the groups. RESULTS: We found that the levels of three cytokines differed significantly in the aqueous humor of POAG and PXG patients: IL-12 and IL-13 were higher in the POAG group, while monocyte chemoattractant protein-1 (monocyte chemotactic and activating factor) was higher in the PXG group. The number of topical hypotensive medications was correlated with diminished levels of two cytokines (IL-7 and basic fibroblast growth factor) in aqueous humor in the POAG group and with diminished levels of IL-12 in tear in the PXG group. CONCLUSION: We conclude that both POAG and PXG show elevated concentrations of proinflammatory cytokines in tear and aqueous humor that could be used as biomarkers for these types of glaucoma and that the concentrations in aqueous humor of three cytokines, IL-12, IL-13, and monocyte chemoattractant protein-1 (monocyte chemotactic and activating factor), could be used to differentiate POAG and PXG.


Assuntos
Citocinas , Glaucoma de Ângulo Aberto , Glaucoma , Humor Aquoso/química , Biomarcadores/metabolismo , Citocinas/metabolismo , Olho/metabolismo , Glaucoma/diagnóstico , Glaucoma/metabolismo , Glaucoma de Ângulo Aberto/diagnóstico , Glaucoma de Ângulo Aberto/metabolismo , Humanos , Lágrimas/química
8.
Pharmaceutics ; 13(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34683978

RESUMO

Posterior segment eye diseases (PSEDs) including age macular degeneration (AMD) and diabetic retinopathy (DR) are amongst the major causes of irreversible blindness worldwide. Due to the numerous barriers encountered, highly invasive intravitreal (IVT) injections represent the primary route to deliver drugs to the posterior eye tissues. Thus, the potential of a more patient friendly topical route has been widely investigated. Mucoadhesive formulations can decrease precorneal clearance while prolonging precorneal residence. Thus, they are expected to enhance the chances of adherence to corneal and conjunctival surfaces and as such, enable increased delivery to the posterior eye segment. Among the mucoadhesive polymers available, chitosan is the most widely explored due to its outstanding mucoadhesive characteristics. In this review, the major PSEDs, their treatments, barriers to topical delivery, and routes of topical drug absorption to the posterior eye are presented. To enable the successful design of mucoadhesive ophthalmic drug delivery systems (DDSs), an overview of mucoadhesion, its theory, characterization, and considerations for ocular mucoadhesion is given. Furthermore, chitosan-based DDs that have been explored to promote topical drug delivery to the posterior eye segment are reviewed. Finally, challenges of successful preclinical to clinical translation of these DDSs for posterior eye drug delivery are discussed.

9.
Pharmaceutics ; 13(6)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204254

RESUMO

Currently available anti-scarring treatments for glaucoma filtration surgery (GFS) have potentially blinding complications, so there is a need for alternative and safer agents. The effects of the intrableb administration of a new combination of the anti-VEGF bevacizumab, sodium hyaluronate and a collagen matrix implant were investigated in a rabbit model of GFS, with the purpose of modulating inflammation, angiogenesis, fibroblast migration and fibrogenesis in the wound healing process. A comparative-effectiveness study was performed with twenty-four rabbits, randomly assigned to the following treatments: (a) biodegradable collagen matrix implant (Olo), (b) bevacizumab-loaded collagen matrix implant (Olo-BVZ), (c) bevacizumab-loaded collagen matrix implant combined with sodium hyaluronate (Olo-BVZ-H5) and (d) sham-operated animals (control). Rabbits underwent a conventional trabeculectomy and were studied over 30 days in terms of intraocular pressure and bleb characterization (height, area and vascularity in central, peripheral and non-bleb zones). Histologic differences among groups were further evaluated at day 30 (inflammation, total cellularity and degree of fibrosis in the area of surgery). Local delivery of bevacizumab (Olo-BVZ and Olo-BVZ-H5) increased the survival of the filtering bleb by 21% and 31%, respectively, and generated a significant decrease in inflammation and cell infiltration histologically 30 days after surgery, without exhibiting any local toxic effects. Olo-BVZ-H5 showed less lymphocyte infiltration and inflammation than the rest of the treatments. Intraoperative intrableb implantation of bevacizumab, sodium hyaluronate and a collagen matrix may provide an improved trabeculectomy outcome in this model of intense wound healing. This study showed an effective procedure with few surgical complications and a novel combination of active compounds that offer new possibilities to improve the efficacy of filtration surgery.

10.
Pharmaceutics ; 13(2)2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33562155

RESUMO

Many diseases affecting the posterior segment of the eye require repeated intravitreal injections with corticosteroids in chronic treatments. The periocular administration is a less invasive route attracting considerable attention for long-term therapies. In the present work, dexamethasone-loaded poly(lactic-co-glycolic) acid (PLGA) microspheres (Dx-MS) were prepared using the oil-in-water (O/W) emulsion solvent evaporation technique. MS were characterized in terms of mean particle size and particle size distribution, external morphology, polymer integrity, drug content, and in vitro release profiles. MS were sterilized by gamma irradiation (25 kGy), and dexamethasone release profiles from sterilized and non-sterilized microspheres were compared by means of the similarity factor (f2). The mechanism of drug release before and after irradiation exposure of Dx-MS was identified using appropriate mathematical models. Dexamethasone release was sustained in vitro for 9 weeks. The evaluation of the in vivo tolerance was carried out in rabbit eyes, which received a sub-Tenon injection of 5 mg of sterilized Dx-MS (20-53 µm size containing 165.6 ± 3.6 µg Dx/mg MS) equivalent to 828 µg of Dx. No detectable increase in intraocular pressure was reported, and clinical and histological analysis of the ocular tissues showed no adverse events up to 6 weeks after the administration. According to the data presented in this work, the sub-Tenon administration of Dx-MS could be a promising alternative to successive intravitreal injections for the treatment of chronic diseases of the back of the eye.

11.
Pharmaceutics ; 13(2)2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33562265

RESUMO

The present study aims to develop a thermo-responsive-injectable hydrogel (HyG) based on PLGA-PEG-PLGA (PLGA = poly-(DL-lactic acid co-glycolic acid); PEG = polyethylene glycol) to deliver neuroprotective agents to the retina over time. Two PLGA-PEG PLGA copolymers with different PEG:LA:GA ratios (1:1.54:23.1 and 1:2.25:22.5) for HyG-1 and HyG-2 development respectively were synthetized and characterized by different techniques (gel permeation chromatography (GPC), nuclear magnetic resonance (NMR), dynamic light scattering (DLS), critical micelle concentration (CMC), gelation and rheological behaviour). According to the physicochemical characterization, HyG-1 was selected for further studies and loaded with anti-inflammatory drugs: dexamethasone (0.2%), and ketorolac (0.5%), alone or in combination with the antioxidants idebenone (1 µM) and D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS) (0.002%). In vitro drug release and cytotoxicity studies were performed for the active substances and hydrogels (loaded and drug-free). A cellular model based on oxidative stress was optimized for anti-inflammatory and antioxidant screening of the formulations by using retinal-pigmented epithelial cell line hTERT (RPE-1). The copolymer 1, used to prepare thermo-responsive HyG-1, showed low polydispersity (PDI = 1.22) and a strong gel behaviour at 25% (w/v) in an isotonic buffer solution close to the vitreous temperature (31-34 °C). Sustained release of dexamethasone and ketorolac was achieved between 47 and 62 days, depending on the composition. HyG-1 was well tolerated (84.5 ± 3.2%) in retinal cells, with values near 100% when the anti-inflammatory and antioxidant agents were included. The combination of idebenone and dexamethasone promoted high oxidative protection in the cells exposed to H2O2, with viability values of 86.2 ± 14.7%. Ketorolac and dexamethasone-based formulations ameliorated the production of TNF-α, showing significant results (p ≤ 0.0001). The hydrogels developed in the present study entail a novel biodegradable tool to treat neurodegenerative processes of the retina overtime.

12.
Expert Opin Drug Deliv ; 18(7): 819-847, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33412914

RESUMO

Introduction: The development of ophthalmic formulations able to deliver hydrophilic and hydrophobic drugs to the inner structures of the eye and restore the preocular tear film has been a leading topic of discussion over the last few years. In this sense, liposomes represent a suitable strategy to achieve these objectives in ocular drug delivery.Areas covered: Knowledge of the different physiological and anatomical eye structures, and specially the ocular surface are critical to better understanding and comprehending the characteristics required for the development of topical ophthalmic liposomal formulations. In this review, several features of liposomes are discussed such as the main materials used for their fabrication, basic structure and preparation methods, from already established to novel techniques, allowing the control and design of special characteristics. Besides, physicochemical properties, purification processes and strategies to overcome delivery or encapsulation challenges are also presented. Expert opinion: Regarding ocular drug delivery of liposomes, there are some features that can be redesigned. Specific biocompatible and biodegradable materials presenting therapeutic properties, such as lipidic compounds or polymers significantly change the way of tackling ophthalmic diseases. Besides, liposomes entail an effective, safe and versatile strategy for the treatment of diseases in the clinical practice.


Assuntos
Oftalmopatias , Lipossomos , Administração Oftálmica , Administração Tópica , Sistemas de Liberação de Medicamentos , Olho , Oftalmopatias/tratamento farmacológico , Humanos , Soluções Oftálmicas
13.
Pharmaceutics ; 12(4)2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32231033

RESUMO

The increment in ocular drug bioavailability after topical administration is one of the main challenges in pharmaceutical technology. For several years, different strategies based on nanotechnology, hydrogels or implants have been evaluated. Nowadays, the tolerance of ophthalmic preparations has become a critical issue and it is essential to the use of well tolerated excipients. In the present work, we have explored the potential of gelatin nanoparticles (GNPs) loaded with timolol maleate (TM), a beta-adrenergic blocker widely used in the clinic for glaucoma treatment and a hybrid system of TM-GNPs included in a hydroxypropyl methylcellulose (HPMC) viscous solution. The TM- loaded nanoparticles (mean particle size of 193 ± 20 nm and drug loading of 0.291 ± 0.019 mg TM/mg GNPs) were well tolerated both in vitro (human corneal cells) and in vivo. The in vivo efficacy studies performed in normotensive rabbits demonstrated that these gelatin nanoparticles were able to achieve the same hypotensive effect as a marketed formulation (0.5% TM) containing a 5-fold lower concentration of the drug. When comparing commercial and TM-GNPs formulations with the same TM dose, nanoparticles generated an increased efficacy with a significant (p < 0.05) reduction of intraocular pressure (IOP) (from 21% to 30%) and an augmentation of 1.7-fold in the area under the curve (AUC)(0-12h). On the other hand, the combination of timolol-loaded nanoparticles (TM 0.1%) and the viscous polymer HPMC 0.3%, statistically improved the IOP reduction up to 30% (4.65 mmHg) accompanied by a faster time of maximum effect (tmax = 1 h). Furthermore, the hypotensive effect was extended for four additional hours, reaching a pharmacological activity that lasted 12 h after a single instillation of this combination, and leading to an AUC(0-12h) 2.5-fold higher than the one observed for the marketed formulation. According to the data presented in this work, the use of hybrid systems that combine well tolerated gelatin nanoparticles and a viscous agent could be a promising alternative in the management of high intraocular pressure in glaucoma.

14.
Curr Med Chem ; 27(4): 570-582, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31486746

RESUMO

The administration of drugs to treat ocular disorders still remains a technological challenge in this XXI century. Although there is an important arsenal of active molecules useful to treat ocular diseases, ranging from classical compounds to biotechnological products, currenty, no ideal delivery system is able to profit all their therapeutic potential. Among the Intraocular Drug Delivery Systems (IODDS) proposed to overcome some of the most important limitations, microsystems and nanosystems have raised high attention. While microsystems are able to offer long-term release after intravitreal injection, nanosystems can protect the active compound from external environment (reducing their clearance) and direct it to its target tissues. In recent years, some researchers have explored the possibility of combining micro and nanosystems in "Nanoparticle-in-Microparticle (NiMs)" systems or "trojan systems". This excellent idea is not exempt of technological problems, remains partially unsolved, especially in the case of IODDS. The objective of the present review is to show the state of art concerning the design, preparation and characterization of trojan microparticles for drug delivery and to remark their potential and limitations as IODDS, one of the most important challenges faced by pharmaceutical technology at the moment.


Assuntos
Oftalmopatias , Nanopartículas , Sistemas de Liberação de Medicamentos , Olho , Humanos , Injeções Intravítreas
15.
Polymers (Basel) ; 11(7)2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31331090

RESUMO

Topical application of drops containing ocular drugs is the preferred non-invasive route to treat diseases that affect the anterior segment of the eye. However, the formulation of eye drops is a major challenge for pharmacists since the access of drugs to ocular tissues is restricted by several barriers. Acetazolamide (ACZ) is a carbonic anhydrase inhibitor used orally for the treatment of ocular hypertension in glaucoma. However, large ACZ doses are needed which results in systemic side effects. Recently, we synthesized copolymers based on 2-hydroxyethyl methacrylate (HEMA) and a functionalized three-arm poloxamer star (Bayfit-MA). The new material (HEMA/Bayfit-MA) was engineered to be transformed into nanoparticles without the use of surfactants, which represents a significant step forward in developing new ophthalmic drug delivery platforms. Acetazolamide-loaded nanocarriers (ACZ-NPs) were prepared via dialysis (224 ± 19 nm, -17.2 ± 0.4 mV). The in vitro release rate of ACZ was constant over 24 h (cumulative delivery of ACZ: 83.3 ± 8.4%). Following standard specifications, ACZ-NPs were not cytotoxic in vitro in cornea, conjunctiva, and macrophages. In normotensive rabbits, ACZ-NPs generated a significant intraocular pressure reduction compared to a conventional solution of ACZ (16.4% versus 9.6%) with the same dose of the hypotensive drug (20 µg). In comparison to previously reported studies, this formulation reduced intraocular pressure with a lower dose of ACZ. In summary, HEMA:Bayfit-MA nanoparticles may be a promising system for ocular topical treatments, showing an enhanced ocular bioavailability of ACZ after a single instillation on the ocular surface.

16.
Adv Drug Deliv Rev ; 126: 127-144, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29339146

RESUMO

Pathologies affecting the optic nerve and the retina are one of the major causes of blindness. These diseases include age-related macular degeneration (AMD), diabetic retinopathy (DR) and glaucoma, among others. Also, there are genetic disorders that affect the retina causing visual impairment. The prevalence of neurodegenerative diseases of the posterior segment is increased as most of them are related with the elderly. Even with the access to different treatments, there are some challenges in managing patients suffering retinal diseases. One of them is the need for frequent interventions. Also, an unpredictable response to therapy has suggested that different pathways may be playing a role in the development of these diseases. The management of these pathologies requires the development of controlled drug delivery systems able to slow the progression of the disease without the need of frequent invasive interventions, typically related with endophthalmitis, retinal detachment, ocular hypertension, cataract, inflammation, and floaters, among other. Biodegradable microspheres are able to encapsulate low molecular weight substances and large molecules such as biotechnological products. Over the last years, a large variety of active substances has been encapsulated in microspheres with the intention of providing neuroprotection of the optic nerve and the retina. The purpose of the present review is to describe the use of microspheres in chronic neurodegenerative diseases affecting the retina and the optic nerve. The advantage of microencapsulation of low molecular weight drugs as well as therapeutic peptides and proteins to be used as neuroprotective strategy is discussed. Also, a new use of the microspheres in the development of animal models of neurodegeneration of the posterior segment is described.


Assuntos
Microesferas , Fármacos Neuroprotetores/farmacologia , Nervo Óptico/efeitos dos fármacos , Retina/efeitos dos fármacos , Animais , Doença Crônica , Humanos , Nervo Óptico/patologia , Retina/patologia
17.
Adv Ther ; 34(5): 1049-1069, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28349508

RESUMO

Schlemm's canal (SC) is a unique, complex vascular structure responsible for maintaining fluid homeostasis within the anterior segment of the eye by draining the excess of aqueous humour. In glaucoma, a heterogeneous group of eye disorders afflicting approximately 60 million individuals worldwide, the normal outflow of aqueous humour into SC is progressively hindered, leading to a gradual increase in outflow resistance, which gradually results in elevated intraocular pressure (IOP). By and large available antiglaucoma therapies do not target the site of the pathology (SC), but rather aim to decrease IOP by other mechanisms, either reducing aqueous production or by diverting aqueous flow through the unconventional outflow system. The present review first outlines our current understanding on the functional anatomy of SC. It then summarizes existing research on SC cell properties; first in the context of their role in glaucoma development/progression and then as a target of novel and emerging antiglaucoma therapies. Evidence from ongoing research efforts to develop effective antiglaucoma therapies targeting SC suggests that this could become a promising site of future therapeutic interventions.


Assuntos
Humor Aquoso/efeitos dos fármacos , Glaucoma/tratamento farmacológico , Pressão Intraocular/efeitos dos fármacos , Doadores de Óxido Nítrico/uso terapêutico , Agonistas do Receptor Purinérgico P1/uso terapêutico , Malha Trabecular/efeitos dos fármacos , Quinases Associadas a rho/uso terapêutico , Humanos , Quinases Associadas a rho/antagonistas & inibidores
18.
Biomaterials ; 124: 157-168, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28199885

RESUMO

PURPOSE: To study the suitability of injectable microspheres based on poly(ester amide) (PEA) or poly lactic-co-glycolic acid (PLGA) as potential vehicles for intravitreal drug delivery in rat eyes. Dexamethasone-loaded PEA microspheres (PEA + DEX) were also evaluated. METHODS: Forty male Sprague Dawley rats were divided into four groups that received different intravitreally injected microspheres: PEA group (n = 12); PLGA group (n = 12); PEA + DEX group (n = 8); and control group (no injection, n = 8). Electroretinography (ERG), fundus autofluorescence (FAF), and spectral domain optical coherence tomography (sdOCT) were performed at baseline, weeks 1 and 2, and months 1, 2, and 3 after intravitreal injection. Eyes were histologically examined using light microscopy and transmission electron microscopy at the end of the in vivo study. RESULTS: There were no statistically significant changes in ERG among the groups. Abnormal FAF pattern and abnormal deposits in OCT were observed after injection but almost completely disappeared between week 2 and month 3 in all injected groups. GFAP staining showed that Müller glia cell activation was most pronounced in PLGA-injected eyes. Increased cell death was not observed by TUNEL staining at month 1. In electron microscopy at month 3, the remnants of microparticles were found in the retinal cells of all injected groups, and loss of plasma membrane was seen in the PLGA group. CONCLUSIONS: Although morphological changes such as mild glial activation and material remnants were observed histologically 1 month and 3 months after injection in all injected groups, minor cell damage was noted only in the PLGA group at 3 months after injection. No evidence of functional abnormality relative to untreated eyes could be detected by ERG 3 months after injection in all groups. Changes observed in in vivo imaging such as OCT and FAF disappeared after 3 months in almost all cases.


Assuntos
Amidas/química , Cápsulas/química , Dexametasona/administração & dosagem , Ácido Láctico/química , Poliésteres/química , Ácido Poliglicólico/química , Retina/anatomia & histologia , Retina/fisiologia , Albinismo Oculocutâneo , Amidas/efeitos adversos , Animais , Cápsulas/administração & dosagem , Cápsulas/efeitos adversos , Dexametasona/efeitos adversos , Difusão , Injeções Intravítreas/métodos , Ácido Láctico/efeitos adversos , Masculino , Teste de Materiais , Microesferas , Poliésteres/efeitos adversos , Ácido Poliglicólico/efeitos adversos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Ratos Sprague-Dawley , Retina/efeitos dos fármacos
19.
Adv Ther ; 34(2): 378-395, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28000166

RESUMO

The approval of one of the first anti-vascular endothelial growth factor (VEGF) agents for the treatment of neovascular age-related macular degeneration one decade ago marked the beginning of a new era in the management of several sight-threatening retinal diseases. Since then, emerging evidence has demonstrated the utility of these therapies for the treatment of other ocular conditions characterized by elevated VEGF levels. In this article we review current perspectives on the use of anti-VEGF drugs as adjuvant therapy in the management of neovascular glaucoma (NVG). The use of anti-VEGFs for modifying wound healing in glaucoma filtration surgery (GFS) is also reviewed. Selected studies investigating the use of anti-VEGF agents or antimetabolites in GFS or the management of NVG have demonstrated that these agents can improve surgical outcomes. However, anti-VEGF agents have yet to demonstrate specific advantages over the more established agents commonly used today. Further studies are needed to evaluate the duration of action, dosing intervals, and toxicity profile of these treatments.


Assuntos
Bevacizumab/farmacologia , Glaucoma Neovascular/tratamento farmacológico , Ranibizumab/farmacologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Inibidores da Angiogênese/farmacologia , Quimioterapia Adjuvante/métodos , Humanos , Resultado do Tratamento
20.
J Control Release ; 211: 105-17, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26003040

RESUMO

Most of the posterior segment diseases are chronic and multifactorial and require long-term intraocular medication. Conventional treatments of these pathologies consist of successive intraocular injections, which are associated with adverse effects. Successful therapy requires the development of new drug delivery systems able to release the active substance for a long term with a single administration. The present work involves the description of a new generation of microspheres based on poly(ester amide)s (PEA), which are novel polymers with improved biodegradability, processability and good thermal and mechanical properties. We report on the preparation of the PEA polymer, PEA microspheres (PEA Ms) and their characterization. PEA Ms (~15µm) were loaded with a lipophilic drug (dexamethasone) (181.0±2.4µg DX/mg Ms). The in vitro release profile of the drug showed a constant delivery for at least 90days. Based on the data from a performed in vitro release study, a kinetic ocular model to predict in vivo drug concentrations in a rabbit vitreous was built. According to the pharmacokinetic simulations, intravitreal injection of dexamethasone loaded PEA microspheres would provide release of the drug in rabbit eyes up to 3months. Cytotoxicity studies in macrophages and retinal pigment epithelial cells revealed a good in vitro tolerance of the microsystems. After sterilization, PEA Ms were administered in vivo by subtenon and intravitreal injections in male Sprague-Dawley rats and the location of the microspheres in rat eyes was monitored. We conclude that PEA Ms provide an alternative delivery system for controlling the delivery of drugs to the eye, allowing a novel generation of microsphere design.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Microesferas , Poliésteres/administração & dosagem , Poliésteres/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Animais , Linhagem Celular , Humanos , Masculino , Camundongos , Coelhos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA