Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Braz J Microbiol ; 55(1): 639-646, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38214875

RESUMO

Iron (Fe) is the fourth most abundant element on the planet, and iron-oxidising bacteria (FeOB) play an important role in the biogeochemical cycle of this metal in nature. FeOB stands out as Fe oxidisers in microaerophilic environments, and new members of this group have been increasingly discussed in the literature, even though their isolation can still be challenging. Among these bacteria is the Gallionellaceae family, mainly composed of neutrophilic FeOB, highlighting Gallionella ferruginea, and nitrite-oxidiser genera. In the previous metagenomic study of the biofilm and sediments of the cooling system from the Irapé hydroelectric power plant (HPP-Irapé), 5% of the total bacteria sequences were related to Gallionellaceae, being 99% unclassified at genus level. Thus, in the present study, a phylogenetic tree based on this family was constructed, in order to search for shared and unique Gallionellaceae signatures in a deep phylogenetic level affiliation and correlated them with geomorphologic characteristics. The results revealed that Gallionella and Ferrigenium were ubiquitous reflecting their ability to adapt to various locations in the power plant. The cave was considered a hotspot for neutrophilic FeOB since it harboured most of the Gallionellaceae diversity. Microscopic biosignatures were detected only in the CS1 sample, which presented abundance of the stalk-forming Ferriphaselus and of the sheath-forming Crenothrix. Further studies are required to provide more detailed insights on Gallionellaceae distribution and diversity patterns in hydroelectric power plants, particularly its biotechnological potential in this industry.


Assuntos
Gallionellaceae , Gallionellaceae/genética , Filogenia , Ferro , Metais , Metagenômica , Oxirredução
2.
BMC Zool ; 7(1): 6, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37170369

RESUMO

BACKGROUND: Limnoperna fortunei is a freshwater bivalve mollusc originally from southern Asia that invaded South America in the 1990's. Due to its highly efficient water pumping and filtering, and its capacity to form strong adhesions to a variety of substrates by byssus thread, this invasive species has been able to adapt to several environments across South America, causing significant ecological and economic damages. By gaining a deeper understanding of the biological and ecological aspects of L. fortunei we will be able to establish more effective strategies to manage its invasion. The gills of the mollusc are key structures responsible for several biological functions, including respiration and feeding. In this work, we characterized the ultrastructure of L. fortunei gills and its ciliary epithelium using light microscopy, transmission and scanning electron microscopies. This is the first report of the morphology of the epithelial cells and cilia of the gill of L. fortunei visualized in high resolution. RESULTS: The analysis showed highly organized and abundant ciliary structures (lateral cilia, laterofrontal cirri and frontal cilia) on the entire length of the branchial epithelium. Mitochondria, smooth endoplasmic reticulum and glycogen granules were abundantly found in the epithelial cells of the gills, demonstrating the energy-demanding function of these structures. Neutral mucopolysaccharides (low viscosity mucus) were observed on the frontal surface of the gill filaments and acid mucopolysaccharides (high viscosity mucus) were observed to be spread out, mainly on the lateral tract. Spherical vesicles, possibly containing mucus, could also be observed in these cells. These findings demonstrate the importance of the mucociliary processes in particle capture and selection. CONCLUSIONS: Our data suggest that the mechanism used by this mollusc for particle capture and selection could contribute to a better understanding of key aspects of invasion and also in the establishment of more efficient and economically viable strategies of population control.

3.
Mater Sci Eng C Mater Biol Appl ; 54: 32-42, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26046265

RESUMO

In this study we characterized the surface morphology and ultrastructure of the foot of the golden mussel, Limnoperna fortunei (Dunker, 1857), relating its characteristics to the attaching mechanisms of this mollusk. The observation of the foot of this bivalve reveals the presence of micro-scaled cilia with a unique shape, which has a narrowing at its end. This characteristic was associated to the capacity for underwater adhesion to substrates through the employment of van der Waals forces, resembling the adhesion phenomenon of the gecko foot. The temporary attachment during locomotion by means of the foot to substrates was observed to be strong even on smooth surfaces, like glass, or hydrophobic waxy surfaces. Comparing TEM and light microscopy results it was possible to associate the mucous secretions and secreting cells found along the tissues to the production of the byssus inside the groove on the ventral portion of the foot. Not only our experiments, but also the state of the art allowed us to discard the involvement of secretions produced in the foot of the mussel to the temporary adhesion. Through SEM images it was possible to build a virtual three-dimensional model where total foot surface was measured for the estimated calculation of van der Waals forces. Also, some theoretical analysis and considerations have been made concerning the characteristics of the functional surface of L. fortunei foot.


Assuntos
Bivalves/anatomia & histologia , Cílios/fisiologia , Adesividade , Animais , Imageamento Tridimensional , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Modelos Teóricos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA