Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Int J Biol Macromol ; 203: 466-480, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35077748

RESUMO

The SARS-CoV-2 nucleocapsid protein (N) is a multifunctional promiscuous nucleic acid-binding protein, which plays a major role in nucleocapsid assembly and discontinuous RNA transcription, facilitating the template switch of transcriptional regulatory sequences (TRS). Here, we dissect the structural features of the N protein N-terminal domain (N-NTD) and N-NTD plus the SR-rich motif (N-NTD-SR) upon binding to single and double-stranded TRS DNA, as well as their activities for dsTRS melting and TRS-induced liquid-liquid phase separation (LLPS). Our study gives insights on the specificity for N-NTD(-SR) interaction with TRS. We observed an approximation of the triple-thymidine (TTT) motif of the TRS to ß-sheet II, giving rise to an orientation difference of ~25° between dsTRS and non-specific sequence (dsNS). It led to a local unfavorable energetic contribution that might trigger the melting activity. The thermodynamic parameters of binding of ssTRSs and dsTRS suggested that the duplex dissociation of the dsTRS in the binding cleft is entropically favorable. We showed a preference for TRS in the formation of liquid condensates when compared to NS. Moreover, our results on DNA binding may serve as a starting point for the design of inhibitors, including aptamers, against N, a possible therapeutic target essential for the virus infectivity.


Assuntos
COVID-19/virologia , Ácidos Nucleicos/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , Domínios e Motivos de Interação entre Proteínas , SARS-CoV-2/fisiologia , Sítios de Ligação , DNA/química , DNA/metabolismo , Regulação Viral da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Ácidos Nucleicos/química , Proteínas do Nucleocapsídeo/química , Ligação Proteica , RNA/química , RNA/metabolismo , Análise Espectral , Relação Estrutura-Atividade
2.
J Venom Anim Toxins Incl Trop Dis ; 27: e20200127, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33796137

RESUMO

BACKGROUND: Insects can be found in numerous diverse environments, being exposed to pathogenic organisms like fungi and bacteria. Once these pathogens cross insect physical barriers, the innate immune system operates through cellular and humoral responses. Antimicrobial peptides are small molecules produced by immune signaling cascades that develop an important and generalist role in insect defenses against a variety of microorganisms. In the present work, a cecropin B-like peptide (AgCecropB) sequence was identified in the velvetbean caterpillar Anticarsia gemmatalis and cloned in a bacterial plasmid vector for further heterologous expression and antimicrobial tests. METHODS: AgCecropB sequence (without the signal peptide) was cloned in the plasmid vector pET-M30-MBP and expressed in the Escherichia coli BL21(DE3) expression host. Expression was induced with IPTG and a recombinant peptide was purified using two affinity chromatography steps with Histrap column. The purified peptide was submitted to high-resolution mass spectrometry (HRMS) and structural analyses. Antimicrobial tests were performed using gram-positive (Bacillus thuringiensis) and gram-negative (Burkholderia kururiensis and E. coli) bacteria. RESULTS: AgCecropB was expressed in E. coli BL21 (DE3) at 28°C with IPTG 0.5 mM. The recombinant peptide was purified and enriched after purification steps. HRMS confirmed AgCrecropB molecular mass (4.6 kDa) and circular dichroism assay showed α-helix structure in the presence of SDS. AgCrecropB inhibited almost 50% of gram-positive B. thuringiensis bacteria growth. CONCLUSIONS: The first cecropin B-like peptide was described in A. gemmatalis and a recombinant peptide was expressed using a bacterial platform. Data confirmed tertiary structure as predicted for the cecropin peptide family. AgCecropB was capable to inhibit B. thuringiensis growth in vitro.

3.
J. venom. anim. toxins incl. trop. dis ; 27: e20200127, 2021. graf, tab
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1154767

RESUMO

Insects can be found in numerous diverse environments, being exposed to pathogenic organisms like fungi and bacteria. Once these pathogens cross insect physical barriers, the innate immune system operates through cellular and humoral responses. Antimicrobial peptides are small molecules produced by immune signaling cascades that develop an important and generalist role in insect defenses against a variety of microorganisms. In the present work, a cecropin B-like peptide (AgCecropB) sequence was identified in the velvetbean caterpillar Anticarsia gemmatalis and cloned in a bacterial plasmid vector for further heterologous expression and antimicrobial tests. Methods AgCecropB sequence (without the signal peptide) was cloned in the plasmid vector pET-M30-MBP and expressed in the Escherichia coli BL21(DE3) expression host. Expression was induced with IPTG and a recombinant peptide was purified using two affinity chromatography steps with Histrap column. The purified peptide was submitted to high-resolution mass spectrometry (HRMS) and structural analyses. Antimicrobial tests were performed using gram-positive (Bacillus thuringiensis) and gram-negative (Burkholderia kururiensis and E. coli) bacteria. Results AgCecropB was expressed in E. coli BL21 (DE3) at 28°C with IPTG 0.5 mM. The recombinant peptide was purified and enriched after purification steps. HRMS confirmed AgCrecropB molecular mass (4.6 kDa) and circular dichroism assay showed α-helix structure in the presence of SDS. AgCrecropB inhibited almost 50% of gram-positive B. thuringiensis bacteria growth. Conclusions The first cecropin B-like peptide was described in A. gemmatalis and a recombinant peptide was expressed using a bacterial platform. Data confirmed tertiary structure as predicted for the cecropin peptide family. AgCecropB was capable to inhibit B. thuringiensis growth in vitro.(AU)


Assuntos
Animais , Peptídeos , Glycine max/microbiologia , Proteínas Citotóxicas Formadoras de Poros/classificação , Cecropinas/administração & dosagem , Sistema Imunitário
4.
Biomol NMR Assign ; 13(1): 239-243, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30879170

RESUMO

FK506 Binding Proteins (FKBPs) are a family of highly conserved and important proteins that possess a peptidyl cis-trans isomerase (PPIases) domain. Human FKBP12 is a prototype of this family and it is involved in many diseases due to its interaction with the immunosuppressive drugs FK506 and rapamycin. They inhibit calcineurin and mTOR complex, respectively, leading to parasite death by inhibiting cell proliferation through cytokinesis blockade being an important target to find new drugs. Tuberculosis is a disease that causes important impacts on public health worldwide. In this context, MtFKBP12 is a putative peptidyl prolyl cis-trans isomerase from Mycobacterium tuberculosis and here we report the NMR chemical shift assignment for 1H, 15N and 13C nuclei in the backbone and side chains of the MtFKBP12. This lays the foundation for further structural studies, backbone dynamics, mapping of interactions and drug screening and development. We have found through the NMR spectrum that the protein is well folded with narrow peaks and almost none overlap in 15N-HSQC. Prediction of secondary structure using Talos-N server showed great similarity with other proteins from this family.


Assuntos
Mycobacterium tuberculosis/enzimologia , Ressonância Magnética Nuclear Biomolecular , Proteína 1A de Ligação a Tacrolimo/química , Isótopos de Carbono , Isótopos de Nitrogênio , Estrutura Secundária de Proteína , Prótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA