Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Dairy Sci ; 107(2): 1228-1243, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37769944

RESUMO

The onset of lactation is characterized by substantially altered calcium (Ca) metabolism; recently, emphasis has been placed on understanding the dynamics of blood Ca in the peripartal cow in response to this change. Thus, the aim of our study was to delineate how prepartum dietary cation-anion difference (DCAD) diets and the magnitude of Ca decline at the onset of lactation altered blood Ca dynamics in the periparturient cow. Thirty-two multiparous Holstein cows were blocked by parity, previous 305-d milk yield and expected parturition date, and randomly allocated to either a positive (+120 mEq/kg) or negative (-120 mEq/kg) DCAD diet from 251 d of gestation until parturition (n = 16/diet). Immediately after parturition cows were continuously infused for 24 h with (1) an intravenous solution of 10% dextrose or (2) Ca gluconate (CaGlc) to maintain blood ionized (iCa) concentrations at ∼1.2 mM (normocalcemia) to form 4 treatment groups (n = 8/treatment). Blood was sampled every 6 h from 102 h before parturition until 96 h after parturition and every 30 min during 24 h continuous infusion. Cows fed a negative DCAD diet prepartum exhibited a less pronounced decline in blood iCa approaching parturition with lesser magnitude of decline relative to positive DCAD-fed cows. Cows fed a negative DCAD diet prepartum required lower rates of CaGlc infusion to maintain normocalcemia in the 24 h postpartum relative to positive DCAD-fed cows. Infusion of CaGlc disrupted blood Ca and P dynamics in the immediate 24 h after parturition and in the days following infusion. Collectively, these data demonstrate that prepartum negative DCAD diets facilitate a more transient hypocalcemia and improve blood Ca profiles at the onset of lactation whereas CaGlc infusion disrupts mineral metabolism.


Assuntos
Cálcio , Suplementos Nutricionais , Gravidez , Feminino , Bovinos , Animais , Lactação/fisiologia , Dieta/veterinária , Cálcio da Dieta , Período Pós-Parto/metabolismo , Ânions , Minerais/metabolismo , Cátions , Ração Animal/análise
2.
Nonlinear Dyn ; 106(2): 1525-1555, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34465942

RESUMO

Given a data-set of Ribonucleic acid (RNA) sequences we can infer the phylogenetics of the samples and tackle the information for scientific purposes. Based on current data and knowledge, the SARS-CoV-2 seemingly mutates much more slowly than the influenza virus that causes seasonal flu. However, very recent evolution poses some doubts about such conjecture and shadows the out-coming light of people vaccination. This paper adopts mathematical and computational tools for handling the challenge of analyzing the data-set of different clades of the severe acute respiratory syndrome virus-2 (SARS-CoV-2). On one hand, based on the mathematical paraphernalia of tools, the concept of distance associated with the Kolmogorov complexity and Shannon information theories, as well as with the Hamming scheme, are considered. On the other, advanced data processing computational techniques, such as, data compression, clustering and visualization, are borrowed for tackling the problem. The results of the synergistic approach reveal the complex time dynamics of the evolutionary process and may help to clarify future directions of the SARS-CoV-2 evolution.

4.
Persoonia ; 44: 301-459, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33116344

RESUMO

Novel species of fungi described in this study include those from various countries as follows: Antarctica, Cladosporium arenosum from marine sediment sand. Argentina, Kosmimatamyces alatophylus (incl. Kosmimatamyces gen. nov.) from soil. Australia, Aspergillus banksianus, Aspergillus kumbius, Aspergillus luteorubrus, Aspergillus malvicolor and Aspergillus nanangensis from soil, Erysiphe medicaginis from leaves of Medicago polymorpha, Hymenotorrendiella communis on leaf litter of Eucalyptus bicostata, Lactifluus albopicri and Lactifluus austropiperatus on soil, Macalpinomyces collinsiae on Eriachne benthamii, Marasmius vagus on soil, Microdochium dawsoniorum from leaves of Sporobolus natalensis, Neopestalotiopsis nebuloides from leaves of Sporobolus elongatus, Pestalotiopsis etonensis from leaves of Sporobolus jacquemontii, Phytophthora personensis from soil associated with dying Grevillea mccutcheonii. Brazil, Aspergillus oxumiae from soil, Calvatia baixaverdensis on soil, Geastrum calycicoriaceum on leaf litter, Greeneria kielmeyerae on leaf spots of Kielmeyera coriacea. Chile, Phytophthora aysenensis on collar rot and stem of Aristotelia chilensis. Croatia, Mollisia gibbospora on fallen branch of Fagus sylvatica. Czech Republic, Neosetophoma hnaniceana from Buxus sempervirens. Ecuador, Exophiala frigidotolerans from soil. Estonia, Elaphomyces bucholtzii in soil. France, Venturia paralias from leaves of Euphorbia paralias. India, Cortinarius balteatoindicus and Cortinarius ulkhagarhiensis on leaf litter. Indonesia, Hymenotorrendiella indonesiana on Eucalyptus urophylla leaf litter. Italy, Penicillium taurinense from indoor chestnut mill. Malaysia, Hemileucoglossum kelabitense on soil, Satchmopsis pini on dead needles of Pinus tecunumanii. Poland, Lecanicillium praecognitum on insects' frass. Portugal, Neodevriesia aestuarina from saline water. Republic of Korea, Gongronella namwonensis from freshwater. Russia, Candida pellucida from Exomias pellucidus, Heterocephalacria septentrionalis as endophyte from Cladonia rangiferina, Vishniacozyma phoenicis from dates fruit, Volvariella paludosa from swamp. Slovenia, Mallocybe crassivelata on soil. South Africa, Beltraniella podocarpi, Hamatocanthoscypha podocarpi, Coleophoma podocarpi and Nothoseiridium podocarpi (incl. Nothoseiridium gen. nov.) from leaves of Podocarpus latifolius, Gyrothrix encephalarti from leaves of Encephalartos sp., Paraphyton cutaneum from skin of human patient, Phacidiella alsophilae from leaves of Alsophila capensis, and Satchmopsis metrosideri on leaf litter of Metrosideros excelsa. Spain, Cladophialophora cabanerensis from soil, Cortinarius paezii on soil, Cylindrium magnoliae from leaves of Magnolia grandiflora, Trichophoma cylindrospora (incl. Trichophoma gen. nov.) from plant debris, Tuber alcaracense in calcareus soil, Tuber buendiae in calcareus soil. Thailand, Annulohypoxylon spougei on corticated wood, Poaceascoma filiforme from leaves of unknown Poaceae. UK, Dendrostoma luteum on branch lesions of Castanea sativa, Ypsilina buttingtonensis from heartwood of Quercus sp. Ukraine, Myrmecridium phragmiticola from leaves of Phragmites australis. USA, Absidia pararepens from air, Juncomyces californiensis (incl. Juncomyces gen. nov.) from leaves of Juncus effusus, Montagnula cylindrospora from a human skin sample, Muriphila oklahomaensis (incl. Muriphila gen. nov.) on outside wall of alcohol distillery, Neofabraea eucalyptorum from leaves of Eucalyptus macrandra, Diabolocovidia claustri (incl. Diabolocovidia gen. nov.) from leaves of Serenoa repens, Paecilomyces penicilliformis from air, Pseudopezicula betulae from leaves of leaf spots of Populus tremuloides. Vietnam, Diaporthe durionigena on branches of Durio zibethinus and Roridomyces pseudoirritans on rotten wood. Morphological and culture characteristics are supported by DNA barcodes.

5.
Persoonia ; 42: 291-473, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31551622

RESUMO

Novel species of fungi described in this study include those from various countries as follows: Australia, Chaetomella pseudocircinoseta and Coniella pseudodiospyri on Eucalyptus microcorys leaves, Cladophialophora eucalypti, Teratosphaeria dunnii and Vermiculariopsiella dunnii on Eucalyptus dunnii leaves, Cylindrium grande and Hypsotheca eucalyptorum on Eucalyptus grandis leaves, Elsinoe salignae on Eucalyptus saligna leaves, Marasmius lebeliae on litter of regenerating subtropical rainforest, Phialoseptomonium eucalypti (incl. Phialoseptomonium gen. nov.) on Eucalyptus grandis × camaldulensis leaves, Phlogicylindrium pawpawense on Eucalyptus tereticornis leaves, Phyllosticta longicauda as an endophyte from healthy Eustrephus latifolius leaves, Pseudosydowia eucalyptorum on Eucalyptus sp. leaves, Saitozyma wallum on Banksia aemula leaves, Teratosphaeria henryi on Corymbia henryi leaves. Brazil, Aspergillus bezerrae, Backusella azygospora, Mariannaea terricola and Talaromyces pernambucoensis from soil, Calonectria matogrossensis on Eucalyptus urophylla leaves, Calvatia brasiliensis on soil, Carcinomyces nordestinensis on Bromelia antiacantha leaves, Dendryphiella stromaticola on small branches of an unidentified plant, Nigrospora brasiliensis on Nopalea cochenillifera leaves, Penicillium alagoense as a leaf endophyte on a Miconia sp., Podosordaria nigrobrunnea on dung, Spegazzinia bromeliacearum as a leaf endophyte on Tilandsia catimbauensis, Xylobolus brasiliensis on decaying wood. Bulgaria, Kazachstania molopis from the gut of the beetle Molops piceus. Croatia, Mollisia endocrystallina from a fallen decorticated Picea abies tree trunk. Ecuador, Hygrocybe rodomaculata on soil. Hungary, Alfoldia vorosii (incl. Alfoldia gen. nov.) from Juniperus communis roots, Kiskunsagia ubrizsyi (incl. Kiskunsagia gen. nov.) from Fumana procumbens roots. India, Aureobasidium tremulum as laboratory contaminant, Leucosporidium himalayensis and Naganishia indica from windblown dust on glaciers. Italy, Neodevriesia cycadicola on Cycas sp. leaves, Pseudocercospora pseudomyrticola on Myrtus communis leaves, Ramularia pistaciae on Pistacia lentiscus leaves, Neognomoniopsis quercina (incl. Neognomoniopsis gen. nov.) on Quercus ilex leaves. Japan, Diaporthe fructicola on Passiflora edulis × P. edulis f. flavicarpa fruit, Entoloma nipponicum on leaf litter in a mixed Cryptomeria japonica and Acer spp. forest. Macedonia, Astraeus macedonicus on soil. Malaysia, Fusicladium eucalyptigenum on Eucalyptus sp. twigs, Neoacrodontiella eucalypti (incl. Neoacrodontiella gen. nov.) on Eucalyptus urophylla leaves. Mozambique, Meliola gorongosensis on dead Philenoptera violacea leaflets. Nepal, Coniochaeta dendrobiicola from Dendriobium lognicornu roots. New Zealand, Neodevriesia sexualis and Thozetella neonivea on Archontophoenix cunninghamiana leaves. Norway, Calophoma sandfjordenica from a piece of board on a rocky shoreline, Clavaria parvispora on soil, Didymella finnmarkica from a piece of Pinus sylvestris driftwood. Poland, Sugiyamaella trypani from soil. Portugal, Colletotrichum feijoicola from Acca sellowiana. Russia, Crepidotus tobolensis on Populus tremula debris, Entoloma ekaterinae, Entoloma erhardii and Suillus gastroflavus on soil, Nakazawaea ambrosiae from the galleries of Ips typographus under the bark of Picea abies. Slovenia, Pluteus ludwigii on twigs of broadleaved trees. South Africa, Anungitiomyces stellenboschiensis (incl. Anungitiomyces gen. nov.) and Niesslia stellenboschiana on Eucalyptus sp. leaves, Beltraniella pseudoportoricensis on Podocarpus falcatus leaf litter, Corynespora encephalarti on Encephalartos sp. leaves, Cytospora pavettae on Pavetta revoluta leaves, Helminthosporium erythrinicola on Erythrina humeana leaves, Helminthosporium syzygii on a Syzygium sp. bark canker, Libertasomyces aloeticus on Aloe sp. leaves, Penicillium lunae from Musa sp. fruit, Phyllosticta lauridiae on Lauridia tetragona leaves, Pseudotruncatella bolusanthi (incl. Pseudotruncatellaceae fam. nov.) and Dactylella bolusanthi on Bolusanthus speciosus leaves. Spain, Apenidiella foetida on submerged plant debris, Inocybe grammatoides on Quercus ilex subsp. ilex forest humus, Ossicaulis salomii on soil, Phialemonium guarroi from soil. Thailand, Pantospora chromolaenae on Chromolaena odorata leaves. Ukraine, Cadophora helianthi from Helianthus annuus stems. USA, Boletus pseudopinophilus on soil under slash pine, Botryotrichum foricae, Penicillium americanum and Penicillium minnesotense from air. Vietnam, Lycoperdon vietnamense on soil. Morphological and culture characteristics are supported by DNA barcodes.

6.
Anim Reprod Sci ; 209: 106144, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31514923

RESUMO

The objective was to compare the use of corpus luteum (CL) vascular perfusion to CL diameter and/or echogenicity to diagnose pregnancy at 21 d after timed-AI. Ovaries of Nelore heifers were assessed using ultrasonography in B-mode and color Doppler simultaneously 21 d after timed-AI (n = 113). Objective evaluations were performed using an image processing software to extract the number of colored pixels (ColorPix), diameter (mm) and echogenicity/mm² (EchoPix) of the CL. Subjective evaluations of the CL were performed by five evaluators using scores of estimated vascular perfusion area of color Doppler scan videos and estimated CL size and qualitative echogenicity of B-mode scan videos. The reference pregnancy diagnosis was performed 33 d after timed-AI using an ultrasonic device. Corpus luteum ColorPix, diameter and EchoPix were highly correlated (P < 0.001) with pregnancy. Pregnancy diagnosis accuracy, sensitivity, and negative predictive value were not different for CL ColorPix and diameter and was less with use of EchoPix compared to the other parameters. Size and vascular perfusion scores were correlated to the greatest extent (0.88-0.94) with the respective objective values within evaluator. The results from the ROC curve analysis indicated a smaller area under the curve for qualitative echogenicity compared to CL size and vascular perfusion. Corpus luteum vascular perfusion was the only subjective evaluation that when assessed there were no false negative pregnancy diagnoses. In conclusion, the use of the objective CL diameter resulted in the same efficacy as CL vascular perfusion evaluations for early pregnancy diagnosis in Nelore heifers.


Assuntos
Bovinos , Corpo Lúteo/irrigação sanguínea , Corpo Lúteo/citologia , Corpo Lúteo/diagnóstico por imagem , Testes de Gravidez , Prenhez , Animais , Diagnóstico Precoce , Sincronização do Estro , Feminino , Inseminação Artificial/veterinária , Tamanho do Órgão , Valor Preditivo dos Testes , Gravidez , Testes de Gravidez/métodos , Testes de Gravidez/veterinária , Fluxo Sanguíneo Regional , Sensibilidade e Especificidade , Fatores de Tempo , Ultrassonografia/métodos , Ultrassonografia/veterinária
7.
Persoonia ; 43: 223-425, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32214501

RESUMO

Novel species of fungi described in this study include those from various countries as follows: Antarctica, Apenidiella antarctica from permafrost, Cladosporium fildesense from an unidentified marine sponge. Argentina, Geastrum wrightii on humus in mixed forest. Australia, Golovinomyces glandulariae on Glandularia aristigera, Neoanungitea eucalyptorum on leaves of Eucalyptus grandis, Teratosphaeria corymbiicola on leaves of Corymbia ficifolia, Xylaria eucalypti on leaves of Eucalyptus radiata. Brazil, Bovista psammophila on soil, Fusarium awaxy on rotten stalks of Zea mays, Geastrum lanuginosum on leaf litter covered soil, Hermetothecium mikaniae-micranthae (incl. Hermetothecium gen. nov.) on Mikania micrantha, Penicillium reconvexovelosoi in soil, Stagonosporopsis vannaccii from pod of Glycine max. British Virgin Isles, Lactifluus guanensis on soil. Canada, Sorocybe oblongispora on resin of Picea rubens. Chile, Colletotrichum roseum on leaves of Lapageria rosea. China, Setophoma caverna from carbonatite in Karst cave. Colombia, Lareunionomyces eucalypticola on leaves of Eucalyptus grandis. Costa Rica, Psathyrella pivae on wood. Cyprus, Clavulina iris on calcareous substrate. France, Chromosera ambigua and Clavulina iris var. occidentalis on soil. French West Indies, Helminthosphaeria hispidissima on dead wood. Guatemala, Talaromyces guatemalensis in soil. Malaysia, Neotracylla pini (incl. Tracyllales ord. nov. and Neotracylla gen. nov.) and Vermiculariopsiella pini on needles of Pinus tecunumanii. New Zealand, Neoconiothyrium viticola on stems of Vitis vinifera, Parafenestella pittospori on Pittosporum tenuifolium, Pilidium novae-zelandiae on Phoenix sp. Pakistan, Russula quercus-floribundae on forest floor. Portugal, Trichoderma aestuarinum from saline water. Russia, Pluteus liliputianus on fallen branch of deciduous tree, Pluteus spurius on decaying deciduous wood or soil. South Africa, Alloconiothyrium encephalarti, Phyllosticta encephalarticola and Neothyrostroma encephalarti (incl. Neothyrostroma gen. nov.) on leaves of Encephalartos sp., Chalara eucalypticola on leaf spots of Eucalyptus grandis × urophylla, Clypeosphaeria oleae on leaves of Olea capensis, Cylindrocladiella postalofficium on leaf litter of Sideroxylon inerme, Cylindromonium eugeniicola (incl. Cylindromonium gen. nov.) on leaf litter of Eugenia capensis, Cyphellophora goniomatis on leaves of Gonioma kamassi, Nothodactylaria nephrolepidis (incl. Nothodactylaria gen. nov. and Nothodactylariaceae fam. nov.) on leaves of Nephrolepis exaltata, Falcocladium eucalypti and Gyrothrix eucalypti on leaves of Eucalyptus sp., Gyrothrix oleae on leaves of Olea capensis subsp. macrocarpa, Harzia metrosideri on leaf litter of Metrosideros sp., Hippopotamyces phragmitis (incl. Hippopotamyces gen. nov.) on leaves of Phragmites australis, Lectera philenopterae on Philenoptera violacea, Leptosillia mayteni on leaves of Maytenus heterophylla, Lithohypha aloicola and Neoplatysporoides aloes on leaves of Aloe sp., Millesimomyces rhoicissi (incl. Millesimomyces gen. nov.) on leaves of Rhoicissus digitata, Neodevriesia strelitziicola on leaf litter of Strelitzia nicolai, Neokirramyces syzygii (incl. Neokirramyces gen. nov.) on leaf spots of Syzygium sp., Nothoramichloridium perseae (incl. Nothoramichloridium gen. nov. and Anungitiomycetaceae fam. nov.) on leaves of Persea americana, Paramycosphaerella watsoniae on leaf spots of Watsonia sp., Penicillium cuddlyae from dog food, Podocarpomyces knysnanus (incl. Podocarpomyces gen. nov.) on leaves of Podocarpus falcatus, Pseudocercospora heteropyxidicola on leaf spots of Heteropyxis natalensis, Pseudopenidiella podocarpi, Scolecobasidium podocarpi and Ceramothyrium podocarpicola on leaves of Podocarpus latifolius, Scolecobasidium blechni on leaves of Blechnum capense, Stomiopeltis syzygii on leaves of Syzygium chordatum, Strelitziomyces knysnanus (incl. Strelitziomyces gen. nov.) on leaves of Strelitzia alba, Talaromyces clemensii from rotting wood in goldmine, Verrucocladosporium visseri on Carpobrotus edulis. Spain, Boletopsis mediterraneensis on soil, Calycina cortegadensisi on a living twig of Castanea sativa, Emmonsiellopsis tuberculata in fluvial sediments, Mollisia cortegadensis on dead attached twig of Quercus robur, Psathyrella ovispora on soil, Pseudobeltrania lauri on leaf litter of Laurus azorica, Terfezia dunensis in soil, Tuber lucentum in soil, Venturia submersa on submerged plant debris. Thailand, Cordyceps jakajanicola on cicada nymph, Cordyceps kuiburiensis on spider, Distoseptispora caricis on leaves of Carex sp., Ophiocordyceps khonkaenensis on cicada nymph. USA, Cytosporella juncicola and Davidiellomyces juncicola on culms of Juncus effusus, Monochaetia massachusettsianum from air sample, Neohelicomyces melaleucae and Periconia neobrittanica on leaves of Melaleuca styphelioides × lanceolata, Pseudocamarosporium eucalypti on leaves of Eucalyptus sp., Pseudogymnoascus lindneri from sediment in a mine, Pseudogymnoascus turneri from sediment in a railroad tunnel, Pulchroboletus sclerotiorum on soil, Zygosporium pseudomasonii on leaf of Serenoa repens. Vietnam, Boletus candidissimus and Veloporphyrellus vulpinus on soil. Morphological and culture characteristics are supported by DNA barcodes.

8.
J Phys Condens Matter ; 30(37): 375301, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30073977

RESUMO

In this work, we study the bound states in the continuum (BICs) in a system formed by a triple quantum dot array embedded between two one-dimensional topological superconductors (TSCs), both hosting Majorana bound states (MBSs) at their ends. The results show the formation of BICs with topological characteristics due to the presence of MBSs. This is a consequence of the interplay between the BIC arising from quantum dots states by means of energy level symmetry breaking through gate voltages, and MBSs leaked into the quantum dots. The BIC is not observed when both TSCs are in long wire limit, i.e. for vanishing inter MBSs coupling, while it projects into the electronic transmission whenever the inter MBSs couplings are away from zero, regardless if they have different strength and/or the phase difference between both TSCs. We study the behavior of BICs poisoned by MBSs as a function of the parameters that are controlling the system. We believe our findings could be useful to implement a protection tool for BICs using MBSs based on tunable gate voltages.

9.
Oper Dent ; 43(5): 539-548, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29513638

RESUMO

The aim was to evaluate, in vitro, the influence of different computer-aided design/computer-aided manufacturing (CAD/CAM) materials (IPS e.max CAD, Vita Enamic, and Lava Ultimate) and thicknesses (0.6 mm and 1.5 mm) on the fracture resistance of occlusal veneers. Sixty human third molars were prepared to simulate advanced erosion of the occlusal surface, and the teeth were randomly divided into six experimental groups (n=10) according to the material and thickness used to build the veneers. Ten sound teeth formed the control group. The veneers were adhesively luted and submitted to mechanical cyclic loading (1 million cycles at 200-N load). The fracture resistance test was performed in a universal testing machine. The failures were classified as "reparable" and "irreparable." According to two-way analysis of variance and the Tukey test, the interaction (material × thickness) was significant ( p=0.013). The highest fracture resistance was obtained for IPS e.max CAD at a 1.5-mm thickness (4995 N) and was significantly higher compared to the other experimental groups ( p<0.05). The lowest fracture resistance was obtained for Vita Enamic at 0.6 mm (2973 N), although this resistance was not significantly different from those for IPS e.max CAD at 0.6 mm (3067 N), Lava Ultimate at 0.6 mm (3384 N), Vita Enamic at 1.5 mm (3540 N), and Lava Ultimate at 1.5 mm (3584 N) ( p>0.05). The experimental groups did not differ significantly from the sound teeth (3991 N) ( p>0.05). The failures were predominantly repairable. The occlusal veneers of IPS e.max CAD, Vita Enamic, and Lava Ultimate, with thicknesses of 0.6 mm and 1.5 mm, obtained fracture resistances similar to those associated with sound teeth.


Assuntos
Cerâmica/uso terapêutico , Desenho Assistido por Computador , Porcelana Dentária/uso terapêutico , Planejamento de Prótese Dentária/métodos , Facetas Dentárias , Falha de Restauração Dentária , Análise do Estresse Dentário , Humanos , Técnicas In Vitro , Dente Molar/cirurgia
10.
Persoonia ; 41: 238-417, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30728607

RESUMO

Novel species of fungi described in this study include those from various countries as follows: Angola, Gnomoniopsis angolensis and Pseudopithomyces angolensis on unknown host plants. Australia, Dothiora corymbiae on Corymbia citriodora, Neoeucasphaeria eucalypti (incl. Neoeucasphaeria gen. nov.) on Eucalyptus sp., Fumagopsis stellae on Eucalyptus sp., Fusculina eucalyptorum (incl. Fusculinaceae fam. nov.) on Eucalyptus socialis, Harknessia corymbiicola on Corymbia maculata, Neocelosporium eucalypti (incl. Neocelosporium gen. nov., Neocelosporiaceae fam. nov. and Neocelosporiales ord. nov.) on Eucalyptus cyanophylla, Neophaeomoniella corymbiae on Corymbia citriodora, Neophaeomoniella eucalyptigena on Eucalyptus pilularis, Pseudoplagiostoma corymbiicola on Corymbia citriodora, Teratosphaeria gracilis on Eucalyptus gracilis, Zasmidium corymbiae on Corymbia citriodora. Brazil, Calonectria hemileiae on pustules of Hemileia vastatrix formed on leaves of Coffea arabica, Calvatia caatinguensis on soil, Cercospora solani-betacei on Solanum betaceum, Clathrus natalensis on soil, Diaporthe poincianellae on Poincianella pyramidalis, Geastrum piquiriunense on soil, Geosmithia carolliae on wing of Carollia perspicillata, Henningsia resupinata on wood, Penicillium guaibinense from soil, Periconia caespitosa from leaf litter, Pseudocercospora styracina on Styrax sp., Simplicillium filiforme as endophyte from Citrullus lanatus, Thozetella pindobacuensis on leaf litter, Xenosonderhenia coussapoae on Coussapoa floccosa. Canary Islands (Spain), Orbilia amarilla on Euphorbia canariensis. Cape Verde Islands, Xylodon jacobaeus on Eucalyptus camaldulensis. Chile, Colletotrichum arboricola on Fuchsia magellanica. Costa Rica, Lasiosphaeria miniovina on tree branch. Ecuador, Ganoderma chocoense on tree trunk. France, Neofitzroyomyces nerii (incl. Neofitzroyomyces gen. nov.) on Nerium oleander. Ghana, Castanediella tereticornis on Eucalyptus tereticornis, Falcocladium africanum on Eucalyptus brassiana, Rachicladosporium corymbiae on Corymbia citriodora. Hungary, Entoloma silvae-frondosae in Carpinus betulus-Pinus sylvestris mixed forest. Iran, Pseudopyricularia persiana on Cyperus sp. Italy, Inocybe roseascens on soil in mixed forest. Laos, Ophiocordyceps houaynhangensis on Coleoptera larva. Malaysia, Monilochaetes melastomae on Melastoma sp. Mexico, Absidia terrestris from soil. Netherlands, Acaulium pannemaniae, Conioscypha boutwelliae, Fusicolla septimanifiniscientiae, Gibellulopsis simonii, Lasionectria hilhorstii, Lectera nordwiniana, Leptodiscella rintelii, Parasarocladium debruynii and Sarocladium dejongiae (incl. Sarocladiaceae fam. nov.) from soil. New Zealand, Gnomoniopsis rosae on Rosa sp. and Neodevriesia metrosideri on Metrosideros sp. Puerto Rico, Neodevriesia coccolobae on Coccoloba uvifera, Neodevriesia tabebuiae and Alfaria tabebuiae on Tabebuia chrysantha. Russia, Amanita paludosa on bogged soil in mixed deciduous forest, Entoloma tiliae in forest of Tilia × europaea, Kwoniella endophytica on Pyrus communis. South Africa, Coniella diospyri on Diospyros mespiliformis, Neomelanconiella combreti (incl. Neomelanconiellaceae fam. nov. and Neomelanconiella gen. nov.) on Combretum sp., Polyphialoseptoria natalensis on unidentified plant host, Pseudorobillarda bolusanthi on Bolusanthus speciosus, Thelonectria pelargonii on Pelargonium sp. Spain, Vermiculariopsiella lauracearum and Anungitopsis lauri on Laurus novocanariensis, Geosmithia xerotolerans from a darkened wall of a house, Pseudopenidiella gallaica on leaf litter. Thailand, Corynespora thailandica on wood, Lareunionomyces loeiensis on leaf litter, Neocochlearomyces chromolaenae (incl. Neocochlearomyces gen. nov.) on Chromolaena odorata, Neomyrmecridium septatum (incl. Neomyrmecridium gen. nov.), Pararamichloridium caricicola on Carex sp., Xenodactylaria thailandica (incl. Xenodactylariaceae fam. nov. and Xenodactylaria gen. nov.), Neomyrmecridium asiaticum and Cymostachys thailandica from unidentified vine. USA, Carolinigaster bonitoi (incl. Carolinigaster gen. nov.) from soil, Penicillium fortuitum from house dust, Phaeotheca shathenatiana (incl. Phaeothecaceae fam. nov.) from twig and cone litter, Pythium wohlseniorum from stream water, Superstratomyces tardicrescens from human eye, Talaromyces iowaense from office air. Vietnam, Fistulinella olivaceoalba on soil. Morphological and culture characteristics along with DNA barcodes are provided.

11.
J Phys Condens Matter ; 30(4): 045301, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29239309

RESUMO

We study the transport properties of an interferometer composed by a quantum dot (QD) coupled with two normal leads and two one-dimensional topological superconductor nanowires (TNWs) hosting Majorana bound states (MBS) at their ends. The geometry considered is such that one TNW has both ends connected with the QD, forming an Aharonov-Bohm (AB) interferometer threaded by an external magnetic flux, while the other TNW is placed near the interferometer TNW. This geometry can alternatively be seen as a long wire contacted across a local defect, with possible coupling between independent-MBS. We use the Green's function formalism to calculate the conductance across normal current leads on the QD. We find that the conductance exhibits a half-quantum value regardless of the AB phase and location of the dot energy level, whenever the interferometer configuration interacts with the neighboring TNW. These findings suggest that such a geometry could be used for a sensitive detection of MBS interactions across TNWs, exploiting the high sensitivity of conductance to the AB phase in the interferometer.

14.
J Fish Biol ; 87(3): 679-90, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26255856

RESUMO

Comparisons of three sets of surveys in the Ria Formosa Lagoon, Portugal, over a 13 year period (2001-2002, 2008-2009 and 2010-2013) revealed significant population fluctuations in at least one of the two seahorse (Hippocampinae) species living there, and that those fluctuations were potentially associated with habitat changes in the lagoon. After a significant decline between the first two survey periods (2001-2002 v. 2008-2009), long-snouted seahorse Hippocampus guttulatus populations increased significantly between 2008-2009 surveys and new 2010-2013 surveys. There were no significant differences in H. guttulatus populations between the 2001-2002 and 2010-2013 surveys. In contrast, there were no significant differences in short-snouted seahorse Hippocampus hippocampus densities among the 16 sites surveyed throughout the three sampling periods, although the ability to detect any change was hampered by the low densities of this species in all time periods. Fluctuations in H. guttulatus densities were positively correlated with the percentage of holdfast coverage, but with none of the other environmental variables tested. These results highlight the importance of holdfast availability in maintaining stable seahorse populations. While population fluctuations are certainly more promising than a consistent downward decline, such extreme fluctuations observed for seahorses in the Ria Formosa Lagoon could still leave these two species vulnerable to any additional stressors, particularly during low density periods.


Assuntos
Smegmamorpha , Animais , Ecossistema , Estuários , Modelos Lineares , Densidade Demográfica , Dinâmica Populacional , Portugal
15.
Oncogene ; 34(50): 6105-14, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25772240

RESUMO

TFAP2C/AP-2γ influences development of the mammary gland and regulates patterns of gene expression in luminal and HER2-amplified breast cancer. The roles of TFAP2C in mammary gland tumorigenesis and in pathways critical to cancer progression remain poorly understood. To gain greater insight into oncogenic mechanisms regulated by TFAP2C, we examined mammary tumorigenesis in MMTV-Neu transgenic female mice with or without conditional knockout (KO) of Tcfap2c, the mouse homolog of TFAP2C. Loss of Tcfap2c increased the latency of tumorigenesis and tumors that formed demonstrated reduced proliferative index and increased apoptosis. In addition, tumors formed in Tcfap2c KO animals had a significant reduction in Egfr levels without a change in the expression of the Neu oncogene. The MMneu-flAP2C cell line was established from tumor tissue derived from MMTV-Neu/Tcfap2c(L/L) control animals and parallel cell lines with and without expression of Tcfap2c were created by transduction with adenovirus-empty and adenovirus-Cre, respectively. KO of Tcfap2c in vitro reduced activated phosphorylated-Erk, decreased cell viability, repressed tumor growth and was associated with attenuation of Egfr expression. Chromatin immunoprecipitation and direct sequencing and expression analysis confirmed that Egfr was a Tcfap2c target gene in murine, as well as human, mammary carcinoma cells. Furthermore, decreased viability of mammary cancer cells was directly related to Egfr functional blockade. We conclude that TFAP2C regulates tumorigenesis, cell growth and survival in HER2-amplified breast cancer through transcriptional regulation of EGFR. The findings have important implications for targeting the EGFR pathway in breast cancer.


Assuntos
Transformação Celular Neoplásica , Neoplasias Mamárias Experimentais/etiologia , Receptor ErbB-2/fisiologia , Fator de Transcrição AP-2/fisiologia , Animais , Carcinogênese , Sobrevivência Celular , Células Cultivadas , Progressão da Doença , Receptores ErbB/fisiologia , Feminino , Humanos , Neoplasias Mamárias Experimentais/patologia , Vírus do Tumor Mamário do Camundongo/genética , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas
16.
Persoonia ; 32: 184-306, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25264390

RESUMO

Novel species of microfungi described in the present study include the following from South Africa: Cercosporella dolichandrae from Dolichandra unguiscati, Seiridium podocarpi from Podocarpus latifolius, Pseudocercospora parapseudarthriae from Pseudarthria hookeri, Neodevriesia coryneliae from Corynelia uberata on leaves of Afrocarpus falcatus, Ramichloridium eucleae from Euclea undulata and Stachybotrys aloeticola from Aloe sp. (South Africa), as novel member of the Stachybotriaceae fam. nov. Several species were also described from Zambia, and these include Chaetomella zambiensis on unknown Fabaceae, Schizoparme pseudogranati from Terminalia stuhlmannii, Diaporthe isoberliniae from Isoberlinia angolensis, Peyronellaea combreti from Combretum mossambiciensis, Zasmidium rothmanniae and Phaeococcomyces rothmanniae from Rothmannia engleriana, Diaporthe vangueriae from Vangueria infausta and Diaporthe parapterocarpi from Pterocarpus brenanii. Novel species from the Netherlands include: Stagonospora trichophoricola, Keissleriella trichophoricola and Dinemasporium trichophoricola from Trichophorum cespitosum, Phaeosphaeria poae, Keissleriella poagena, Phaeosphaeria poagena, Parastagonospora poagena and Pyrenochaetopsis poae from Poa sp., Septoriella oudemansii from Phragmites australis and Dendryphion europaeum from Hedera helix (Germany) and Heracleum sphondylium (the Netherlands). Novel species from Australia include: Anungitea eucalyptorum from Eucalyptus leaf litter, Beltraniopsis neolitseae and Acrodontium neolitseae from Neolitsea australiensis, Beltraniella endiandrae from Endiandra introrsa, Phaeophleospora parsoniae from Parsonia straminea, Penicillifer martinii from Cynodon dactylon, Ochroconis macrozamiae from Macrozamia leaf litter, Triposporium cycadicola, Circinotrichum cycadis, Cladosporium cycadicola and Acrocalymma cycadis from Cycas spp. Furthermore, Vermiculariopsiella dichapetali is described from Dichapetalum rhodesicum (Botswana), Ophiognomonia acadiensis from Picea rubens (Canada), Setophoma vernoniae from Vernonia polyanthes and Penicillium restingae from soil (Brazil), Pseudolachnella guaviyunis from Myrcianthes pungens (Uruguay) and Pseudocercospora neriicola from Nerium oleander (Italy). Novelties from Spain include: Dendryphiella eucalyptorum from Eucalyptus globulus, Conioscypha minutispora from dead wood, Diplogelasinospora moalensis and Pseudoneurospora canariensis from soil and Inocybe lanatopurpurea from reforested woodland of Pinus spp. Novelties from France include: Kellermania triseptata from Agave angustifolia, Zetiasplozna acaciae from Acacia melanoxylon, Pyrenochaeta pinicola from Pinus sp. and Pseudonectria rusci from Ruscus aculeatus. New species from China include: Dematiocladium celtidicola from Celtis bungeana, Beltrania pseudorhombica, Chaetopsina beijingensis and Toxicocladosporium pini from Pinus spp. and Setophaeosphaeria badalingensis from Hemerocallis fulva. Novel genera of Ascomycetes include Alfaria from Cyperus esculentus (Spain), Rinaldiella from a contaminated human lesion (Georgia), Hyalocladosporiella from Tectona grandis (Brazil), Pseudoacremonium from Saccharum spontaneum and Melnikomyces from leaf litter (Vietnam), Annellosympodiella from Juniperus procera (Ethiopia), Neoceratosperma from Eucalyptus leaves (Thailand), Ramopenidiella from Cycas calcicola (Australia), Cephalotrichiella from air in the Netherlands, Neocamarosporium from Mesembryanthemum sp. and Acervuloseptoria from Ziziphus mucronata (South Africa) and Setophaeosphaeria from Hemerocallis fulva (China). Several novel combinations are also introduced, namely for Phaeosphaeria setosa as Setophaeosphaeria setosa, Phoma heteroderae as Peyronellaea heteroderae and Phyllosticta maydis as Peyronellaea maydis. Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa.

17.
Water Sci Technol ; 70(2): 272-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25051474

RESUMO

The macro region of Campinas (Brazil) is rapidly evolving with new housing developments and industries, creating the challenge of finding new ways to treat wastewater to a quality that can be reused in order to overcome water scarcity problems. To address this challenge, SANASA (a publicly owned water and wastewater concessionaire from Campinas) has recently constructed the 'EPAR (Water Reuse Production Plant) Capivari II' using the GE ZeeWeed 500D(®) ultrafiltration membrane system. This is the first large-scale membrane bioreactor (MBR) system in Latin America with biological tertiary treatment capability (nitrogen and phosphorus removal), being able to treat an average flow of 182 L/s in its first phase of construction. The filtration system is composed of three membrane trains with more than 36,000 m(2) of total membrane filtration area. The membrane bioreactor (MBR) plant was commissioned in April 2012 and the permeate quality has exceeded expectations. Chemical oxygen demand (COD) removal rates are around and above 97% on a consistent basis, with biochemical oxygen demand (BOD5) and NH3 (ammonia) concentrations at very low levels, and turbidity lower than 0.3 nephelometric turbidity unit (NTU). Treated effluent is sent to a water reuse accumulation tank (from where will be distributed as reuse water), and the excess is discharged into the Capivari River.


Assuntos
Reatores Biológicos , Membranas Artificiais , Eliminação de Resíduos Líquidos/métodos , Brasil , Filtração/instrumentação , Filtração/métodos , Instalações de Eliminação de Resíduos
18.
J Fish Biol ; 84(4): 872-84, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24502668

RESUMO

In this study, the spot pattern in Hippocampus guttulatus was analysed using a computer programme algorithm that allowed individual comparison. This methodology was first tested in a controlled environment using 51 adult and 55 juvenile H. guttulatus. Positive matches were obtained in 86·3 and 83·6% of the adults and juveniles, respectively. In a second experiment, monthly surveys were carried out in five selected locations in the Ria Formosa Lagoon, south Portugal, over the course of a year and a total of 980 photographs were analysed. Photographed H. guttulatus were re-sighted one to nine times during the course of the survey period with an overall re-sight record of over 30%. Photo-identification was therefore shown to be a useful tool for non-invasive mark-recapture studies that can be successfully used to survey the population abundance of H. guttulatus aged 6 months or older in consecutive years. This could be of great value when considering the assessment of H. guttulatus populations and understanding changes over time.


Assuntos
Sistemas de Identificação Animal , Processamento de Imagem Assistida por Computador , Smegmamorpha , Algoritmos , Animais , Conservação dos Recursos Naturais/métodos , Fotografação , Densidade Demográfica , Portugal , Software
19.
Fish Physiol Biochem ; 40(3): 739-50, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24162549

RESUMO

Ontogenetic development of the digestive tract and associated organs in long snout seahorse Hippocampus guttulatus juveniles was morphologically and histologically examined from the time of release from the male's pouch until 72 h after the first meal. When released from the male's pouch, juvenile seahorses are small adult replicates. This means that unlike other teleost fish larvae, the first developmental phase has already taken place, and juveniles are morphologically prepared and able to feed on live prey immediately following parturition. At this stage, the buccopharynx, oesophagus, and intestine already appear to be fully developed. The intestine is divided into the midgut and hindgut by an intestinal valve, and intestinal villi are visible in the midgut. When fed with DHA-Selco(®) enriched Artemia, H. guttulatus juveniles developed a severe condition of overinflation of the gas bladder. The continuous overinflation of the gas bladder forced air into the gut (48 h after the first meal), resulting in overinflation of both the gut and the gas bladder (72 h after the first meal), and death occurred within 120 h after the first meal. When fed natural copepods, H. guttulatus juveniles continued a normal feeding activity with no signs of intestinal disorders, and the gas bladder and intestine maintained their normal shape. This is the first study to positively associate gas bladder overinflation of juvenile seahorses with nutritionally unbalanced diets, and not to gas supersaturation alone. It is therefore necessary to develop more adequate feed and/or enrichment products to improve the survival of juvenile seahorses in captivity.


Assuntos
Dieta , Trato Gastrointestinal/crescimento & desenvolvimento , Smegmamorpha/crescimento & desenvolvimento , Animais , Artemia/química , Copépodes/química , Ácidos Graxos/análise , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA