RESUMO
The increasing demands for resources driven by the global population necessitate exploring sustainable alternatives for affordable animal protein over the use of traditional protein sources. Insects, with their high protein content, offer a promising solution, especially when reared on agricultural post-distillation residues for enhanced sustainability and cost-effectiveness. We assessed the development of Zophobas morio (F.) (Coleoptera: Tenebrionidae) larvae on diets enriched with essential oils and post-distillation residues from Greek aromatic and medicinal plants. Two aromatic plant mixtures (A and B) were examined. Mixture A consisted of post-distillation residues, while Mixture B incorporated these residues along with essential oils. Insect rearing diets were enriched with different proportions (10, 20, and 30 %) of these mixtures, with wheat bran serving as the control. Enrichment positively influenced larval development without compromising survival. Larval weight remained unchanged with Mixture A, but improved with Mixture B. No adverse effects were detected in the case of the enriched diets, although higher concentrations of Mixture B prolonged development time.
Assuntos
Besouros , Larva , Óleos Voláteis , Plantas Medicinais , Animais , Plantas Medicinais/química , Dieta , Ração Animal/análiseRESUMO
Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) is becoming a major pest of Greece's agricultural production, including tree fruit. Until now, the control of this pest has been based on conventional methods, with the application of chemical insecticides being the primary option. However, the wide distribution of H. halys, in combination with the large area of tree fruit production in Greece, raise the need for alternative control methods. In this study, we investigated the possibility of implementing microbial control agents for managing H. halys. Eggs and nymphs of H. halys were treated with 15 native entomopathogenic fungal isolates and their virulence was evaluated in the laboratory. After treatment, egg hatching time was recorded for 7 days and ranged from 4.5 to 7.0 days. Nymphal survival was recorded daily for 7 days following application and ranged from 2.1 to 6.6 days for second instar nymphs and 3.7 to 6.8 days for fourth instar ones. Beauveria varroae isolate displayed the highest toxicity to all H. halys stages that were tested and could be considered a promising biocontrol agent of this insect. Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary.οκ.
Assuntos
Heterópteros , Inseticidas , Animais , Inseticidas/farmacologia , Ninfa , Frutas , AgriculturaRESUMO
This work assesses the dietary use of two insect meals of Tenebrio molitor (TM) larvae reared in conventional (TM-10) or MAP-enriched substrates (MAP-TM-10) as fish meal replacements (10%) in the diets of gilthead seabream (Sparus aurata). Fish (n = 4500; 207.19 ± 1.47 g) were divided into three groups with triplicates: control (fed conventional diet), TM-10, and MAP-TM-10 groups. The fish were reared in floating cages for 12 weeks and the dietary effects on white blood cell activation, heat shock proteins, MAPKs, and apoptosis of the fish were evaluated. The MAP-TM-10 group exhibited the highest eosinophilic induction. Phosphorylated levels of p38 MAPK, p44/42 MAPK, HSP70, and HSP90 increased in the TM-10 and MAP-TM-10 groups. In terms of apoptosis, Bax levels were lower in the TM groups compared to the control, and the MAP-TM-10 group showed even lower levels than the TM-10 group. Bcl-2 levels increased in the TM-10 group compared to the control, and further increased in the MAP-TM-10 group. The Bax/Bcl-2 ratio, an apoptosis indicator, decreased in the TM groups, with the MAP-TM-10 group showing a further decrease compared to TM-10. These findings suggest that insects' breeding substrate being enriched with MAPs modulated the effect of TM on cellular stress and apoptosis.
RESUMO
The brown marmorated stink bug, Halyomorpha halys Stål (Hemiptera: Pentatomidae), is native to Japan, China, Taiwan, and Korea. Its dispersion from Asia to the United States of America and Europe caused serious damage to fruit, vegetables, and high-value crops. In Greece, damages are reported in kiwi orchards in the regions of Pieria and Imathia, which are the main production areas of kiwifruit. Greek kiwifruit production is expected to increase twofold within the next years. The aim of this research is to study the terrain and canopy properties that may have an impact on the development of H. halys populations. Thus, five kiwi orchards in total were selected in the regions of Pieria and Imathia. Τen traps were installed from early June to late October within each selected kiwi orchard-two types of traps at every side of the orchards and the center. The installed traps were examined weekly and the number of the captured H. halys was recorded. During the same days, sentinel satellite images were analyzed to calculate the vegetation index, NDVI (Normalised Difference Vegetation Index), and NDWI (Normalised Difference Water Index). The results showed population variability within the kiwi orchards since the population of H. halys was higher in areas with high NDVI and NDWI values. Additionally, our research revealed that H. halys prefers to develop populations at higher altitudes at both regional and field scales. The results of this research can be used to reduce damages by H. halys in kiwi orchards using different rates of pesticides depending on the prediction of the population size. There are multiple benefits of the proposed practice, such as a reduction in the production cost of kiwifruits, an increase in farmers' profit, and environmental protection.
RESUMO
Halyomorpha halys (Hemiptera: Pentatomidae) is an invasive pest species that was imported into Greece in 2011 and since then, has caused severe qualitative and quantitative damage to economically important crops. Its management relies mainly on the use of broad-spectrum insecticides, with little to no information available concerning the potential use of native parasitoids in terms of classical biological control. Our study aimed to assess the parasitism rate and development time of the gregarious egg parasitoid Ooencyrtus telenomicida (Hymenoptera: Encyrtidae) on H. halys egg-masses, depending on several factors such as: (i) age of parasitoids, (ii) density of parasitoids, (iii) age of host eggs, and (iv) oviposition experience of parasitoids. According to our results, the younger the host eggs and the more parasitoids, the higher the parasitism rate achieved by adults of O. telenomicida, with the maximum mean value of the parasitism rate observed with 1-day-old host eggs and 4 parasitoid pairs (57.3%). On the contrary, the lowest mean value of the parasitism rate was observed with 4-day-old host eggs and 1 parasitoid pair (6.5%). Similarly, the age of parasitoids significantly affected parasitisation. The older the parasitoids were, the higher the parasitism rate achieved by adults of O. telenomicida, with a three-fold higher parasitism rate observed at 3-4 and 5-6-day-old O. telenomicida, compared to 1-2-day-old (31.8, 32.4, and 12.1%, respectively). Individuals that developed in younger host eggs displayed a shorter development time, and the shortest development time was observed for O. telenomicida laid by 2 parasitoid pairs. Parasitoid age did not affect the development time of O. telenomicida, although there was a tendency for individuals laid by younger female parasitoids to exhibit a shorter development time. Our findings provide valuable information on the potential use of O. telenomicida as a biocontrol agent of H. halys.
RESUMO
Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) is a native pest of East Asia that overwinters as an adult in natural and human-made structures. Adult emergence from overwintering sites starts in spring, whereas females produce offspring in early summer on host plants, where most feeding occurs. In this study, we investigated the reproductive physiology of overwintering females of H. halys in Northern Greece, by determining the duration of the preoviposition period and fecundity of individuals that were left to overwinter in natural conditions and were subsequently transferred to chambers with standard conditions monthly, from December 2020 to March 2021. According to our results, overwintering H. halys females do not initiate egg laying once they emerge from overwintering sites, but rather need some additional time to exit diapause and mature reproductively. The mean preoviposition period of overwintering females that were transferred from their overwintering sites to the chambers in December 2020 was 29.0 days, which was significantly longer by 8.3 days than that of females that overwintered until March 2021, and by 13.2 days than the control (26 °C, 60% RH and a 16:8 h light: dark photoperiod). No significant difference among the average number of eggs per egg mass laid by overwintering individuals brought in the chambers in different time intervals and the laboratory colony was observed. However, females that were left to overwinter until March laid a significantly higher number of eggs in total, compared to the ones whose overwintering was disrupted in February. Based on our findings, overwintering females of H. halys experience a facultative reproductive diapause in Northern Greece. Our study was the first to determine the occurrence of diapause of H. halys in N. Greece and our findings could be very valuable for assessing the damage of this pest to early-season crops and designing successful management practices.
RESUMO
In terms of sustainability and circular economy, agricultural by-products may be efficiently reused in insects' rearing for high-quality protein sources in human diet and animal feeds. The present study aimed to explore whether the utilization of carob pods as feeding substrate may beneficially affect Tenebrio molitor's growth, nutritional value, antioxidant status and cellular responses. Increasing levels of milled whole carob pods (0, 25, 50, 75, 100%) were used as alternative wheat bran (control) substrates for yellow mealworm rearing, while growth performance, proximate composition, total phenolic content, antioxidant enzyme activity and the expression of stress- and apoptotic-related proteins were evaluated in larvae. The results showed that carob pods' content up to 75% did not significantly differentiate larvae weight, development time and total dry matter. Larvae total phenolic content and antioxidant activity exhibited a significant increase at 75% content. Although the antioxidant enzymes' activity decreased at both 25 and 50% levels, higher carob content levels (75 and 100%) resulted in no significant changes compared to the control. Carob pods led to decreased apoptotic indicators and the low expression of most stress-related proteins compared to the control. The present findings demonstrate that carob pods and their antioxidant properties exert beneficial effects on T. molitor's rearing and nutritional status, although 100% carob content may impact adversely the larvae due to the high amounts of carob tannins.
RESUMO
Potato, Solanum tuberosum L., one of the most commonly cultivated horticultural crops throughout the world, is susceptible to a variety of herbivory insects. In the present study, we evaluated the consequence of feeding by the sap-sucking insect Halyomorpha halys on potato leaf photosynthetic efficiency. By using chlorophyll fluorescence imaging methodology, we examined photosystem II (PSII) photochemistry in terms of feeding and at the whole leaf area. The role of reactive oxygen species (ROS) in potato's defence response mechanism immediately after feeding was also assessed. Even 3 min after feeding, increased ROS generation was observed to diffuse through the leaf central vein, probably to act as a long-distance signalling molecule. The proportion of absorbed energy being used in photochemistry (ΦPSII) at the whole leaf level, after 20 min of feeding, was reduced by 8% compared to before feeding due to the decreased number of open PSII reaction centres (qp). After 90 min of feeding, ΦPSII decreased by 46% at the whole leaf level. Meanwhile, at the feeding zones, which were located mainly in the proximity of the leaf midrib, ΦPSII was lower than 85%, with a concurrent increase in singlet-excited oxygen (1O2) generation, which is considered to be harmful. However, the photoprotective mechanism (ΦNPQ), which was highly induced 90 min after feeding, was efficient to compensate for the decrease in the quantum yield of PSII photochemistry (ΦPSII). Therefore, the quantum yield of non-regulated energy loss in PSII (ΦNO), which represents 1O2 generation, remained unaffected at the whole leaf level. We suggest that the potato PSII response to sap-sucking insect feeding underlies the ROS-dependent signalling that occurs immediately and initiates a photoprotective PSII defence response to reduce herbivory damage. A controlled ROS burst can be considered the primary plant defence response mechanism to herbivores.
RESUMO
Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) is an endemic species of East Asia; it was introduced into Europe in 2007. It has a wide range of hosts as it feeds on over 170 host plant species and significantly impacts crop production. In Greece, H. halys causes significant losses in the production of kiwi, peaches, and green beans; thus, control of this species (including biological control) is essential. Here, we focus on the potential impact of native natural enemies of H. halys in Greece. From June to October 2020, we sampled naturally field-laid H. halys egg masses to recover native parasitoids. A total of 20 egg masses of H. halys were collected from infested fields from different locations in northern Greece. Out of 529 eggs, 45 parasitoids managed to hatch successfully. The overall parasitism rate was 8.5%. We found two species of Hymenopteran egg parasitoids attacking H. halys eggs-Anastatus bifasciatus (Geoffrey) (Hymenoptera: Eupelmidae) and Ooencyrtus telenomicida (Vassiliev) (Hymenoptera: Encyrtidae), with the former comprising 58% of all parasitoids that were recovered. These results contribute to the knowledge about the natural enemy community that attacks H. halys in Greece, and the use of these native egg parasitoids in biological control programs may be a viable H. halys management strategy.
RESUMO
Mosquitoes (Diptera: Culicidae) are the largest group of blood-feeding insects that disturb not only humans but also other mammals and birds. This study reports the presence of native mosquito species in the regional unit of Thessaloniki and the monitoring of their population. In total, 13 mosquito species belonging to four genera were identified. The most dominant species was Culex pipiens, followed by Aedes caspius. In the present study, we report for the first time the presence of Ae. vittatus in Greece and of Anopheles plumbeus in the regional unit of Thessaloniki. Regarding the seasonal variation, species of the genus Aedes were the ones that first appeared in late March, followed by Culex species at the end of April and finally species of the genus Anopheles in July. Species of the Aedes genus were found to be the most abundant in the first quarter of the year (late March to early April). Population of Cx. pipiens remained at high levels from late April to late September. Species of the genus Anopheles were found in high densities from early August to October. The current study contributes to the knowledge of the mosquito species composition and their relative abundance in an area where West Nile virus caused severe epidemic outbreaks.
Assuntos
Aedes , Culex , Animais , Grécia , Mosquitos Vetores , Saúde Pública , Estações do AnoRESUMO
Sustainability, circular economy and alternative production systems are urgent imperatives for humanity and animal husbandry. Unless wasted, agri-food by-products can offer a promising source of high value. We evaluated the effect of rice bran (RB), corncob (CC), potato peels (PP), solid biogas residues (BR), and olive-oil processing residuals (OR), as alternative substrates to wheat bran (WB as control), on the growth and nutritional value of Tenebrio molitor during its breeding for animal feeds and/or human consumption. Innovation-wise, we further investigated the substrate supplementation (0, 10, 20%) with post-distillation residues of Mediterranean aromatic-medicinal plants (MAPs: lavender, Greek oregano, rosemary, olive; 1:1:1:1 ratio). Tenebrio molitor larvae (TML) were reared in all the studied substrates, and TML and diets' proximate and fatty acid compositions as well as total phenol and flavonoid content and antioxidant potential were assessed using standard procedures. After statistical analysis of correlations, we observed that CC promoted oviposition and progeny survival; larval weight and dry matter were positively affected mainly by dietary energy and fat content; number of TML and/or larval weight increased using 10% MAPs inclusion in WB, RB and OR or RB, OR, BR and PP, respectively, which did not affect protein content; TML fatty acid composition decreased the content of saturated ones and increased that of mono-unsaturated ones; MAPs residues had an apparent favorable impact on total phenolic content and antioxidant activity of each substrate, with RB displaying the highest capacity and content. These findings indicate that alternative substrates can be exploited and their enrichment with natural phenolics is able to influence T. molitor growth, offering highly beneficial and nutritional value.
RESUMO
Studying the biology of Culex species is crucial to understanding their role in arbovirus transmission and for the development of efficient control strategies. Assessments of survival, development, adult longevity, fecundity and egg hatching of Culex pipiens form 'molestus' (Forsskål), were conducted, under nine constant and fluctuating temperatures ranging from 15 to 35 ± 0.5°C. Higher survival rates were observed at constant temperature of 25°C as well as fluctuating with the same mean. Complete mortality occurred at 35°C in both constant and fluctuating temperature regimes. Development rate from egg to adult increased between 15 and 32.5°C, in a linear fashion. Adult longevity ranged from 1.4 d at 32.5°C to 73.5 d at 15°C. Females lived significantly longer compared to males at all temperature regimes with the exception of constant 32.5°C where adult longevity was similar between males and females. Fecundity was higher at moderate constant and fluctuating temperatures compared to high temperatures, where females laid a significantly smaller number of eggs. Likewise, egg hatching was significantly lower at the highest tested temperature regimes compared to low and moderate ones. The lowest developmental thresholds of the species in different developmental stages ranged between 11.17 and 11.95°C at constant temperatures and between 11.09 and 12.74°C at fluctuating ones. Differences between constant and fluctuating temperatures were observed concerning developmental time, fecundity, and male adult longevity at the two lowest tested temperatures, highlighting the importance of testing also fluctuating temperatures that simulate field conditions.
Assuntos
Culex/fisiologia , Características de História de Vida , Mosquitos Vetores/fisiologia , Vírus do Nilo Ocidental , Animais , Culex/crescimento & desenvolvimento , Feminino , Fertilidade , Grécia , Longevidade , Masculino , Mosquitos Vetores/crescimento & desenvolvimento , Temperatura , Vírus do Nilo Ocidental/fisiologiaRESUMO
We previously showed that the females of the mushroom sciarid, Lycoriella ingenua (Dufour, 1839) (Diptera: Sciaridae), one of the most severe pests of the cultivated white button mushroom, Agaricus bisporus (J.E. Lange) Emil J. Imbach (Agaricales: Agaricaceae), are attracted to the mushroom compost that mushrooms are grown on and not to the mushrooms themselves. We also showed that females are attracted to the parasitic green mold, Trichoderma aggressivum. In an attempt to identify what is in the mushroom compost that attracts female L. ingenua, we isolated several species of fungi from adult males and females, third instar larvae, and mushroom compost itself. We then analyzed the attraction of females to these substrates using a static-flow two choice olfactometer, as well as their oviposition tendencies in another type of assay under choice and no-choice conditions. We also assessed the survival of larvae to adulthood when first instar larvae were placed on each of the isolated fungal species. We found that female flies were attracted most to the mycoparasitic green mold, T. aggressivum, to Penicilium citrinum isolated from adult female bodies, and to Scatylidium thermophilium isolated from the mushroom compost. Gravid female flies laid the most eggs on T. aggressivum, Aspergillus flavus isolated from third instar larval frass, Aspergillus fumigatus isolated from adult male bodies, and on P. citrinum. This egg-laying trend remained consistent under no-choice conditions as females aged. First instar larvae developed to adulthood only on S. thermophilium and Chaetomium sp. isolated from mushroom compost, and on P. citrinum. Our results indicate that the volatiles from a suite of different fungal species act in tandem in the natural setting of mushroom compost, with some first attracting gravid female flies and then others causing them to oviposit. The ecological context of these findings is important for creating an optimal strategy for using possible semiochemicals isolated from these fungal species to better monitor and control this pestiferous mushroom fly species.
Assuntos
Agaricus/fisiologia , Dípteros/microbiologia , Dípteros/fisiologia , Fungos/fisiologia , Animais , Feminino , Fertilizantes , Fungos/classificação , Fungos/isolamento & purificação , Controle de Insetos/métodos , Larva/microbiologia , Larva/fisiologia , Masculino , Micélio/fisiologia , Oviposição/fisiologia , Feromônios/metabolismo , Solo , Trichoderma/isolamento & purificação , Trichoderma/fisiologiaRESUMO
Female emerald ash borers, Agrilus planipennis (Coleoptera: Buprestidae), emit a macrocyclic lactone, (Z)-3-dodecen-12-olide, that increases field trap captures on large-panel prism traps when co-emitted with the green leaf volatile (Z)-3-hexenol. We assessed attraction to these compounds by using visual decoy-baited branch traps, which attract males by mimicking a living female resting upon a leaf. Pairs of branch traps, with and without visual decoy beetles, were placed on green ash, Fraxinus pennsylvanica, trees, which were assigned different odor treatments: 1) no odor, 2) (Z)-3-hexenol alone, and 3) (Z)-3-hexenol-plus-lactone. Male captures were positively affected by the presence of decoys and the emission of either (Z)-3-hexenol or (Z)-3-hexenol plus lactone. The decoy-baited traps with the combination of (Z)-3-hexenol plus lactone caught more males than any other treatment. Greater male captures were associated with continuing captures later in the season, suggesting that decoy and odor attractants remain attractive throughout the flight period. Female captures were not affected by the visual decoys, but odors did influence captures, with the (Z)-3-hexenol plus lactone treatment catching the greatest number of females. The rare female trap captures were negatively correlated with the more common male captures on the odorless and (Z)-3-hexenol-baited traps, but were not correlated with male captures when the lactone was added. Thus, in the absence of the lactone, the visual signal of other conspecifics can inhibit female attraction. However, the pheromone attracts both sexes independently of the visual signal on the trap.
Assuntos
Comportamento Animal/efeitos dos fármacos , Besouros/efeitos dos fármacos , Besouros/fisiologia , Sinais (Psicologia) , Lactonas/farmacologia , Comportamento Sexual Animal/efeitos dos fármacos , Percepção Visual , Animais , Feminino , Fraxinus/química , Lactonas/química , MasculinoRESUMO
Lycoriella ingenua Dufour (Diptera: Sciaridae) is acknowledged as the major pest species of the white button mushroom, Agaricus bisporus, throughout the world. Components of the female-produced sex pheromone of this species were identified previously as C15-C18 n-alkanes, with the major component n-heptadecane, and shown to be attractive to L. mali. However, a subsequent report could not repeat this work. We reinvestigated the sex pheromone of this species by confirming that virgin females were attractive to males in a Y-tube bioassay and by collection of extracts from virgin females. Extracts were analyzed by gas chromatography coupled to electroantennographic detection, and by the less widely-used technique of gas chromatography coupled to a behavioral bioassay to detect compounds causing wing-fanning and copulatory abdomen curling in males. A single, behaviorally-active pheromone component was isolated and characterized by gas chromatography coupled to mass spectrometry. This component was definitively not n-heptadecane or any of the other C15-C19 n-alkanes reported previously, but is proposed to be a sesquiterpene alcohol having analytical characteristics that closely matched those of reference germacradienols.
Assuntos
Álcoois/análise , Dípteros/fisiologia , Sesquiterpenos/análise , Atrativos Sexuais/química , Atrativos Sexuais/metabolismo , Animais , Antenas de Artrópodes/fisiologia , Quimiotaxia , Cromatografia Gasosa , Feminino , MasculinoRESUMO
The effect of temperature on the biology of Venturia canescens (Gravenhorst) (Hymenoptera: Ichneumonidae) is well understood under constant temperature conditions, but less so under more natural, fluctuating conditions. Herein we studied the influence of fluctuating temperatures on biological parameters of V. canescens. Parasitized fifth-instar larvae of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) were reared individually in incubators at six fluctuating temperature regimes (15-19.5°C with a mean of 17.6°C, 17.5-22.5°C with a mean of 19.8°C, 20-30°C with a mean of 22.7°C, 22.5-27.5°C with a mean of 25°C, 25.5-32.5°C with a mean of 28.3°C and 28.5-33°C with a mean of 30°C) until emergence and death of V. canescens adults. Developmental time from parasitism to adult eclosion, adult longevity and survival were recorded at each fluctuating temperature regime. In principle, developmental time decreased with an increase of the mean temperature of the fluctuating temperature regime. Upper and lower threshold temperatures for total development were estimated at 34.9 and 6.7°C, respectively. Optimum temperature for development and thermal constant were 28.6°C and 526.3 degree days, respectively. Adult longevity was also affected by fluctuating temperature, as it was significantly reduced at the highest mean temperature (7.0 days at 30°C) compared to the lowest one (29.4 days at 17.6°C). Survival was low at all tested fluctuating temperatures, apart from mean fluctuating temperature of 25°C (37%). Understanding the thermal biology of V. canescens under more natural conditions is of critical importance in applied contexts. Thus, predictions of biological responses to fluctuating temperatures may be used in population forecasting models which potentially influence decision-making in IPM programs.
Assuntos
Temperatura , Vespas/crescimento & desenvolvimento , Aclimatação , Animais , Larva/crescimento & desenvolvimento , LongevidadeRESUMO
BACKGROUND: Venturia canescens is a parthenogenetic koinobiont endoparasitoid of several pyralid moth larvae that are major pests of stored products. Low temperatures have been extensively used to control stored-product insects as an alternative to the application of traditional pesticides. However, most studies have focused on the cold hardiness profile of the major stored-product pests. The objective of this study was to investigate how factors such as age, food, host availability and acclimation affect the cold tolerance of V. canescens by determining its supercooling capacity. RESULTS: Young adults displayed significantly lower supercooling points (SCPs) than older adults, irrespective of the availability of a host. Host availability had a moderate effect on supercooling, whereas food consumption resulted in a significant enhancement of SCP. Acclimation to low temperatures increased the supercooling capacity considerably. Furthermore, an increase in the duration of exposure to acclimation temperature resulted in lower SCPs. CONCLUSION: Adults of V. canescens displayed an enhanced ability to supercool, however, they appear to be less cold tolerant than their respective hosts. This information would be useful in determining the potential of using V. canescens as a biological agent in Integrated Pest Management (IPM) programs, taking into consideration the adverse effects of low temperatures on its survival.