Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Medicina (Kaunas) ; 59(10)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37893571

RESUMO

Rheumatoid arthritis refers to joint diseases of unclear etiology whose final stages can lead to unbearable pain and complete immobility of the affected joints. As one of the most widely known diseases of the joints, it serves as a study target for a large number of research groups and pharmaceutical companies. Modern treatment with anti-inflammatory drugs, including janus kinase (JAK) inhibitors, monoclonal antibodies, and botanicals (polyphenols, glycosides, alkaloids, etc.) has achieved some success and hope for improving the course of the disease. However, existing drugs against RA have a number of side effects which push researchers to elaborate on more selective and effective drug candidates. The avant-garde of research, which aims to develop treatment of rheumatoid arthritis using antisense oligonucleotides along with nonsteroidal drugs and corticosteroids against inflammation, increases the chances of success and expands the arsenal of drugs. The primary goal in the treatment of this disease is to find therapies that allow patients with rheumatoid arthritis to move their joints without pain. The main purpose of this review is to show the victories and challenges for the treatment of rheumatoid arthritis and the tortuous but promising path of research that aims to help patients experience the joy of freely moving joints without pain.


Assuntos
Artrite Reumatoide , Humanos , Anti-Inflamatórios/uso terapêutico , Corticosteroides/uso terapêutico , Dor/tratamento farmacológico , Articulações
2.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675069

RESUMO

The SARS-CoV-2 pandemic has demonstrated the need to create highly effective antivirals and vaccines against various RNA viruses, including SARS coronaviruses. This paper provides a short review of innovative strategies in the development of antivirals and vaccines against SARS coronaviruses, with a focus on antisense antivirals, oligonucleotide adjuvants in vaccines, and oligonucleotide vaccines. Well-developed viral genomic databases create new opportunities for the development of innovative vaccines and antivirals using a post-genomic platform. The most effective vaccines against SARS coronaviruses are those able to form highly effective memory cells for both humoral and cellular immunity. The most effective antivirals need to efficiently stop viral replication without side effects. Oligonucleotide antivirals and vaccines can resist the rapidly changing genomic sequences of SARS coronaviruses using conserved regions of their genomes to generate a long-term immune response. Oligonucleotides have been used as excellent adjuvants for decades, and increasing data show that oligonucleotides could serve as antisense antivirals and antigens in vaccine formulations, becoming a prospective tool for immune system tuning.


Assuntos
COVID-19 , Vacinas Virais , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , SARS-CoV-2 , Oligonucleotídeos/farmacologia , Adjuvantes Imunológicos , Sistema Imunitário , DNA
3.
Int J Mol Sci ; 23(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36555325

RESUMO

Insects vastly outnumber us in terms of species and total biomass, and are among the most efficient and voracious consumers of plants on the planet. As a result, to preserve crops, one of the primary tasks in agriculture has always been the need to control and reduce the number of insect pests. The current use of chemical insecticides leads to the accumulation of xenobiotics in ecosystems and a decreased number of species in those ecosystems, including insects. Sustainable development of human society is impossible without useful insects, so the control of insect pests must be effective and selective at the same time. In this article, we show for the first time a natural way to regulate the number of insect pests based on the use of extracellular double-stranded DNA secreted by the plant Pittosporum tobira. Using a principle similar to one found in nature, we show that the topical application of artificially synthesized short antisense oligonucleotide insecticides (olinscides, DNA insecticides) is an effective and selective way to control the insect Coccus hesperidum. Using contact oligonucleotide insecticide Coccus-11 at a concentration of 100 ng/µL on C. hesperidum larvae resulted in a mortality of 95.59 ± 1.63% within 12 days. Green oligonucleotide insecticides, created by nature and later discovered by humans, demonstrate a new method to control insect pests that is beneficial and safe for macromolecular insect pest management.


Assuntos
Hemípteros , Inseticidas , Animais , Humanos , Inseticidas/farmacologia , Oligonucleotídeos/farmacologia , Ecossistema , Resistência a Inseticidas , Insetos/genética , Controle de Insetos/métodos , Hemípteros/genética , Agricultura/métodos , Produtos Agrícolas/genética , DNA/farmacologia , Controle Biológico de Vetores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA