Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
2.
Int J Food Microbiol ; 410: 110490, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37992554

RESUMO

Salmonella enterica subsp. enterica serovar Infantis (S. Infantis) is one of the "top five Salmonella serovars" of clinical significance in the European Union (EU). Antimicrobial resistant and extended spectrum ß-lactamase (ESBL) AmpC-producing S. Infantis have been described in food production systems and human clinical samples in Italy. Recently, an increase of MDR S. Infantis carrying blaCTX-M genes involved in 3rd generation cephalosporin resistance was noticed in the EU, including Italy, mainly due to the spread of S. Infantis harboring a pESI-like plasmid. The aim of this study was to investigate the occurrence of the S. Infantis pESI-like plasmid among antibiotic resistant S. Infantis strains isolated at different points of the food chain, and to provide a phylogenetic analysis to gain further insight on their transmission pathways from 'farm to fork'. MDR S. Infantis strains (n. 35) isolated from 2016 to 2021 at different stages of the food chain (animals, food, food-related environments, and humans) were investigated with in depth molecular characterization using real-time PCR, S1 nuclease pulsed-field gel electrophoresis (S1-PFGE) and whole genome sequencing (WGS). Our study reported the occurrence of S. Infantis strains harboring pESI-like plasmids, carrying blaCTX-M-1 genes, in Central Italy, at different sampling points along the food chain. Results confirmed the presence of a plasmid with a molecular size around 224-310 kb, thus consistent with the pESI-like, in 97 % of the 35 samples investigated. Two variants of S. Infantis pESI-like IncFIB(K)_1_Kpn3 were detected, one associated with the European clone carrying blaCTX-M-1 (21 isolates) and the other associated with U.S. isolates carrying blaCTX-M-65 (2 isolates, pESI-like U.S. variant). The majority was resistant to 3rd generation cephalosporins but none of the strains tested positive for the carbapenemase encoding genes. A total of 118 virulence genes were identified in isolates harboring the pESI-like plasmid. cgMLST and SNP-based analysis revealed the presence of one main cluster, composed by strains isolated from the environment, animals, food and humans. The results of this investigation underline the importance of phylogenetic studies to monitor and understand pathogen and AMR spread in a One Health approach.


Assuntos
Salmonella enterica , Salmonella , Animais , Humanos , Filogenia , Fazendas , Salmonella/genética , Plasmídeos/genética , beta-Lactamases/genética , beta-Lactamases/metabolismo , Itália , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética
3.
Sci Rep ; 13(1): 21598, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062105

RESUMO

The current global pandemic of COVID-19 is characterized by waves of infection due to the emergence of new SARS-CoV-2 variants carrying mutations on the Spike (S) protein gene. Since autumn 2020 many Variants of Concern (VOC) have been reported: Alpha/B.1.1.7, Beta/B.1.351, Gamma/P.1, Delta/B.1.617.2, Omicron/B.1.1.529, and sublineages. Surveillance of genomic variants is currently based on whole-genome sequencing (WGS) of viral genomes on a random fraction of samples positive to molecular tests. WGS involves high costs, extended analysis time, specialized staff, and expensive instruments compared to a PCR-based test. To rapidly identify the VOCs in positive samples, six assays based on real-time PCR and high-resolution melting (HRM) were designed on the S gene and applied to 120 oro/nasopharyngeal swab samples collected from October 2020 to June 2022 (106 positive and 14 negative samples). Overall, the assays showed 100% specificity and sensitivity compared with commercial PCR tests for COVID-19. Moreover, 104 samples out of 106 (98.1%) were correctly identified as follows: 8 Wuhan (wild type), 12 Alpha, 23 Delta, 46 Omicron BA.1/BA.1.1, 15 Omicron BA.2/BA.4/BA.5. With our lab equipment, about 10 samples can be processed every 3 h at the cost of less than € 10 ($ 10.60) per sample, including RNA extraction. The implementation of this approach could help local epidemiological surveillance and clinical decision-making.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Reação em Cadeia da Polimerase em Tempo Real , Bioensaio
4.
Parasit Vectors ; 16(1): 282, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580789

RESUMO

BACKGROUND: Leishmaniasis is a zoonotic disease endemic in the Mediterranean region where Leishmania infantum is the causative agent of human and canine infection. Characterization of this parasite at the subspecies level can be useful in epidemiological studies, to evaluate the clinical course of the disease (e.g. resistant strains, visceral and cutaneous forms of leishmaniasis) as well as to identify infection reservoirs. Multilocus enzyme electrophoresis (MLEE), a method currently recognized as the reference method for characterizing and identifying strains of Leishmania, is cumbersome and time-consuming and requires cultured parasites. These disadvantages have led to the development of other methods, such as multilocus microsatellite typing (MLMT) and multilocus sequence typing (MLST), for typing Leishmania parasites; however, these methods have not yet been applied for routine use. In this study, we first used MLST to identify informative polymorphisms on single-copy genes coding for metabolic enzymes, following which we developed two rapid genotyping assays based on high-resolution melting (HRM) analysis to explore these polymorphisms in L. infantum parasites. METHODS: A customized sequencing panel targeting 14 housekeeping genes was designed and MLST analysis was performed on nine L. infantum canine and human strains/isolates. Two quantitative real-time PCR-HRM assays were designed to analyze two informative polymorphisms on malic enzyme (ME) and glucose-6-phosphate isomerase (GPI) genes (390T/G and 1831A/G, respectively). The two assays were applied to 73 clinical samples/isolates from central/southern Italy and Pantelleria island, and the results were confirmed by DNA sequencing in a subset of samples. RESULTS: The MLST analysis, together with sequences available in the Genbank database, enabled the identification of two informative polymorphisms on the genes coding for ME and GPI. The fast screening of these polymorphisms using two HRM-based assays in 73 clinical samples/isolates resulted in the identification of seven genotypes. Overall, genotype 1 (sequence type 390T/1831G) was the most highly represented (45.2%) in the overall sample and correlated with the most common L. infantum zymodemes (MON-1, MON-72). Interestingly, in Pantelleria island, the most prevalent genotype (70.6%) was genotype 6 (sequence type 390T/1831A). CONCLUSIONS: Applying our HRM assays on clinical samples allowed us to identify seven different genotypes without the need for parasite isolation and cultivation. We have demonstrated that these assays could be used as fast, routine and inexpensive tools for epidemiological surveillance of L. infantum or for the identification of new infection reservoirs.


Assuntos
Glucose-6-Fosfato Isomerase , Leishmania infantum , Proteínas de Protozoários , Genótipo , Glucose-6-Fosfato Isomerase/genética , Leishmania infantum/enzimologia , Leishmania infantum/genética , Tipagem de Sequências Multilocus , Reação em Cadeia da Polimerase em Tempo Real , Proteínas de Protozoários/genética
5.
Antibiotics (Basel) ; 12(4)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37107005

RESUMO

This article reports a rapid and unexpected spread of colonization cases of NDM-1 carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in a neonatal surgical unit (NSU) at Bambino Gesù Children's Hospital in Rome, Italy. Between the 16th of November 2020 and the 18th of January 2021, a total of 20 NDM-1 carbapenemase-producing K. pneumoniae (n = 8) and E. coli (n = 12) were isolated from 17 out of 230 stool samples collected from neonates admitted in the aforementioned ward and time period by an active surveillance culture program routinely in place to monitor the prevalence of colonization/infection with multidrug-resistant Gram-negative microorganisms. All strains were characterized by antimicrobial susceptibility testing, detection of resistance determinants, PCR-based replicon typing (PBRT) and multilocus-sequence typing (MLST). All isolates were highly resistant to most of the tested antibiotics, and molecular characterization revealed that all of them harbored the blaNDM-1 gene. Overall, IncA/C was the most common Inc group (n = 20/20), followed by IncFIA (n = 17/20), IncFIIK (n = 14/20) and IncFII (n = 11/20). MLST analysis was performed on all 20 carbapenemase-producing Enterobacterales (CPE) strains, revealing three different Sequence Types (STs) among E. coli isolates, with the prevalence of ST131 (n = 10/12; 83%). Additionally, among the 8 K. pneumoniae strains we found 2 STs with the prevalence of ST37 (n = 7/8; 87.5%). Although patient results were positive for CPE colonization during their hospital stay, infection control interventions prevented their dissemination in the ward and no cases of infection were recorded in the same time period.

6.
Antibiotics (Basel) ; 11(6)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35740132

RESUMO

Nontyphoidal salmonellosis (NTS) is the second most commonly reported gastrointestinal infection in humans and an important cause of food-borne outbreaks in Europe. The use of antimicrobial agents for animals, plants, and food production contributes to the development of antibiotic-resistant Salmonella strains that are transmissible to humans through food. The aim of this study was to investigate the presence and the potential dissemination of multidrug-resistant (MDR) Salmonella strains isolated in the Marche Region (Central Italy) via the food chain. Strains were isolated from different sources: food, human, food animal/livestock, and the food-processing environment. Among them, we selected MDR strains to perform their further characterization in terms of resistance to tetracycline agent, carriage of tet genes, and plasmid profiles. Tetracycline resistance genes were detected by PCR and plasmid replicons by PCR-based replicon typing (PBRT). A total of 102 MDR Salmonella strains were selected among the most prevalent serovars: S. Infantis (n = 36/102), S. Derby (n = 20/102), S. Typhimurium (n = 18/102), and a monophasic variant of S. Typhimurium (MVST, n = 28/102). Resistance to sulfisoxazole (86%) and tetracycline (81%) were the most common, followed by ampicillin (76%). FIIS was the most predominant replicon (17%), followed by FII (11%) and FIB (11%) belonging to the IncF incompatibility group. Concerning the characterization of tet genes, tetB was the most frequently detected (27/89), followed by tetA (10/89), tetG (5/89), and tetM (1/89). This study showed the potential risk associated with the MDR Salmonella strains circulating along the food chain. Hence, epidemiological surveillance supported by molecular typing could be a very useful tool to prevent transmission of resistant Salmonella from food to humans, in line with the One Health approach.

7.
Antibiotics (Basel) ; 11(4)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35453183

RESUMO

The spread of carbapenemase-producing Enterobacterales (CPE), especially Klebsiella pneumoniae (K. pneumoniae) and Escherichia coli (E. coli), is a serious public health threat in pediatric hospitals. The associated risk in newborns is due to their underdeveloped immune system and limited treatment options. The aim was to estimate the prevalence and circulation of CPE among the neonatal intensive units of a major pediatric hospital in Italy and to investigate their molecular features. A total of 124 CPE were isolated from rectal swabs of 99 newborn patients at Bambino Gesù Children's Hospital between July 2016 and December 2019. All strains were characterized by antimicrobial susceptibility testing, detection of resistance genes, and PCR-based replicon typing (PBRT). One strain for each PBRT profile of K. pneumoniae or E. coli was characterized by multilocus-sequence typing (MLST). Interestingly, the majority of strains were multidrug-resistant and carried the blaNDM gene. A large part was characterized by a multireplicon status, and FII, A/C, FIA (15%) was the predominant. Despite the limited size of collection, MLST analysis revealed a high number of Sequence Types (STs): 14 STs among 28 K. pneumoniae and 8 STs among 11 E. coli, with the prevalence of the well-known clones ST307 and ST131, respectively. This issue indicated that some strains shared the same circulating clone. We identified a novel, so far never described, ST named ST10555, found in one E. coli strain. Our investigation showed a high heterogeneity of CPE circulating among neonatal units, confirming the need to monitor their dissemination in the hospital also through molecular methods.

8.
J Nat Prod ; 84(4): 993-1001, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33848161

RESUMO

The eradication of recurrent Pseudomonas aeruginosa (PA) lung infection in cystic fibrosis (CF) patients may be hampered by the development of persistent bacterial forms, which can tolerate antibiotics through efflux pump overexpression. After demonstrating the efflux pump inhibitory effect of the alkaloid berberine on the PA MexXY-OprM efflux pump, in this study, we tested its ability (80/320 µg/mL) to enhance tobramycin (20xMIC/1000xMIC) activity against PA planktonic/biofilm cultures. Preliminary investigations of the involvement of MexY in PA tolerance to tobramycin treatment, performed on the isogenic pair PA K767 (wild type)/K1525 (ΔmexY) growing in planktonic and biofilm cultures, demonstrated that the ΔmexY mutant K1525 produced a lower (100 and 10 000 times, respectively) amount of tolerant cells than that of the wild type. Next, we grew broth cultures of PAO1, PA14, and 20 PA clinical isolates (of which 13 were from CF patients) in the presence of 20xMIC tobramycin with and without berberine 80 µg/mL. Accordingly, most strains showed a greater (from 10- to 1000-fold) tolerance reduction in the presence of berberine. These findings highlight the involvement of the MexXY-OprM system in the tobramycin tolerance of PA and suggest that berberine may be used in new valuable therapeutic combinations to counteract persister survival.


Assuntos
Berberina/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Sequência de Aminoácidos , Proteínas de Bactérias , Biofilmes/efeitos dos fármacos , Fibrose Cística/microbiologia , Farmacorresistência Bacteriana , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Quaternária de Proteína , Infecções por Pseudomonas/tratamento farmacológico , Tobramicina/farmacologia
9.
Antibiotics (Basel) ; 10(1)2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33435256

RESUMO

The emerging spread of carbapenemase-producing Enterobacterales (CPE) strains, in particular, Klebsiella pneumoniae and Escherichia coli, has become a significant threat to hospitalized patients. Carbapenemase genes are frequently located on plasmids than can be exchanged among clonal strains, increasing the antibiotic resistance rate. The aim of this study was to determine the prevalence of CPE in patients upon their admission and to analyze selected associated factors. An investigation of the antibiotic resistance and genetic features of circulating CPE was carried out. Phenotypic tests and molecular typing were performed on 48 carbapenemase-producing strains of K. pneumoniae and E. coli collected from rectal swabs of adult patients. Carbapenem-resistance was confirmed by PCR detection of resistance genes. All strains were analyzed by PCR-based replicon typing (PBRT) and multilocus sequence typing (MLST) was performed on a representative isolate of each PBRT profile. More than 50% of the strains were found to be multidrug-resistant, and the bla KPC gene was detected in all the isolates with the exception of an E. coli strain. A multireplicon status was observed, and the most prevalent profile was FIIK, FIB KQ (33%). MLST analysis revealed the prevalence of sequence type 512 (ST512). This study highlights the importance of screening patients upon their admission to limit the spread of CRE in hospitals.

10.
Mol Genet Genomic Med ; 9(1): e1555, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33205897

RESUMO

BACKGROUND: Hypohidrotic ectodermal dysplasia (HED) is the most common form of ectodermal dysplasia and is mainly associated with mutations in the EDA, EDAR, and EDARADD responsible for the development of ectodermal-derived structures. HED displays different modes of inheritance according to the gene that is involved, with X-linked EDA-related HED being the most frequent form of the disease. METHODS: Two families with tooth agenesis and manifestations of HED underwent clinical examination and EDA, EDAR, and EDARADD genetic analysis. The impact of the novel variant on the protein was evaluated through bioinformatics tools, whereas molecular modeling was used to predict the effect on the protein structure. RESULTS: A novel missense variant was identified in the EDAR (c.287T>C, p.Phe96Ser) of a female child proband and her mother, accounting for autosomal dominant HED. The genetic variant c.866G>A (p.Arg289His) in EDA, which has been previously described, was observed in the male proband of another family confirming its role in X-linked HED. The inheritance model of the missense mutation showed a different relationship with X-linked HED and non-syndromic tooth agenesis. CONCLUSION: Our findings provide evidence of variable expression of HED in heterozygous females, which should be considered for genetic counseling, and different modes of inheritance related to tooth development.


Assuntos
Anodontia/genética , Displasia Ectodérmica/genética , Ectodisplasinas/genética , Receptor Edar/genética , Adulto , Anodontia/patologia , Pré-Escolar , Displasia Ectodérmica/patologia , Ectodisplasinas/química , Ectodisplasinas/metabolismo , Receptor Edar/química , Receptor Edar/metabolismo , Feminino , Genes Dominantes , Humanos , Masculino , Mutação de Sentido Incorreto , Linhagem , Ligação Proteica , Domínios Proteicos , Estabilidade Proteica , Síndrome
11.
Microorganisms ; 8(12)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339158

RESUMO

The parasite protozoan Leishmania, the causative agent of leishmaniasis, includes two subgenera of medical interest: Leishmania (Leishmania) and Leishmania (Viannia). Parasite species detection and characterization is crucial to choose treatment protocols and to monitor the disease evolution. Molecular approaches can speed up and simplify the diagnostic process. In particular, several molecular assays target the mitochondrial DNA minicircle network (kDNA) that characterizes the Leishmania genus. We previously proposed a qPCR assay targeting kDNA, followed by high resolution melt (HRM) analysis (qPCR-ML) to distinguish L. (L.) infantum and L. (L.) amazonensis from L. Viannia species. Successively, this assay has been integrated with other qPCR assays, to differentiate L. (L.) infantum, L. (L.) amazonensis and L. (L.) mexicana. In this work, we tested the applicability of our qPCR-ML assay on L. (L.) donovani, L. (L.) major, L. (L.) tropica and L. (L.) aethiopica, showing that the qPCR-ML assay can also amplify Old World species, different from L. (L.) infantum, with good quantification limits (1 × 10-4-1 × 10-6 ng/pcr tube). Moreover, we evaluated 11 L. (L.) infantum strains/isolates, evidencing the variability of the kDNA minicircle target molecules among the strains/isolates of the same species, and pointing out the possibility of quantification using different strains as reference. Taken together, these data account for the consideration of qPCR-ML as a quantitative pan-Leishmania assay.

12.
Front Microbiol ; 11: 1101, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528456

RESUMO

Unlike human isolates, environmental Escherichia coli isolates have not been thoroughly investigated for the diversity and transferability of antibiotic-resistant plasmids. In this study, antibiotic-resistant strains from marine sediment (n = 50) and clams (n = 53) were analyzed (i) for their plasmid content using a PCR-based plasmid replicon typing (PBRT) kit and (ii) for the transferability of plasmid-associated antibiotic resistance (AR) traits by mating experiments. Fifteen of the thirty replicons targeted by the PBRT kit were detected in the isolates; 8/15 were identified in both sediment and clam isolates, although at different frequencies. The most frequent replicons in sediment (74%) and in clam strains (66%) alike, were FIA, FIB, or FII, which are associated with the IncF group, followed by the I1α replicon, which was more frequent in clam (24.5%) than in sediment (10%) strains. More than 50% of the strains contained multiple replicons; although 15 were untypable, S1-PFGE analysis demonstrated that 14/15 carried no plasmids. All cryptic strains were successfully typed and were positive for IncF or IncI replicons. Antibiotic-resistant strains accounted for 63% of all isolates and were significantly (p < 0.05) more frequent in phylogroup A. Most (35%) multidrug-resistant (MDR) strains belonged to phylogroup A, too. Although 25/26 MDR strains were positive for IncF plasmids (the exception being a clam strain), the FII-FIB rep combination was predominant (63%) among the sediment isolates, whereas most clam isolates (40%) carried the FII replicon alone. In mating experiments, selected MDR strains carrying FIB, FII, and I1α replicons, used as the donors, transferred multiple ARs together with the IncF or IncI plasmids at high frequency. Since IncI plasmids are common in E. coli and Salmonella enterica isolates from poultry, our findings suggest an animal origin to the E. coli clam strains carrying IncI plasmids. They also suggest a role for IncI plasmids in the spread of ARs among environmental Enterobacteriaceae and, through the food chain, to human isolates. In conclusion, the PBRT kit proved to be a useful tool to identify plasmids carrying antibiotic-resistant genes and to shed light on the factors underpinning their diffusion.

13.
Parasit Vectors ; 11(1): 572, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30382928

RESUMO

BACKGROUND: Leishmania infantum is the aetiological agent of visceral leishmaniasis (VL) and cutaneous leishmaniasis (CL). Numerous strains and/or zymodemes have been identified and characterized by multilocus enzyme electrophoresis (MLEE). MLEE is considered the reference method for L. infantum parasite typing and it is based upon enzyme electrophoretic mobility analysis from promastigote cultures. However, the MLEE technique is cumbersome, time-consuming and does not detect silent genetic mutations or nucleotide changes that give rise to amino acid changes that do not alter electrophoretic mobility. As a result of these difficulties, many DNA-based typing methods have been developed over the past few years. However, relative to the enzymes utilized in MLEE analysis, we observed a shortage of DNA sequences available in the GenBank database or an absolute lack of sequences belonging to specific zymodemes. The aims of the present study were to (i) implement the number of sequences coding for metabolic enzymes used in MLEE; (ii) identify polymorphisms that characterize L. infantum zymodemes most prevalent in the Mediterranean basin; and (iii) exploit these polymorphisms to develop a rapid screening test that would give results comparable with existing MLEE typing. RESULTS: Partial sequences of seven metabolic enzyme genes (malic enzyme, 6-phosphogluconate dehydrogenase, mitochondrial isocitrate dehydrogenase, glucose-6-phosphate isomerase, glucose-6-phosphate dehydrogenase, phosphoglucomutase and mannose phosphate isomerase) were obtained from 11 L. infantum strains. The comparison of these sequences with those obtained from GenBank allowed for the identification of a few polymorphisms that could distinguish several zymodemes. In particular, the polymorphism 390T>G in the malic enzyme gene has been exploited to develop a high-resolution melt (HRM)-based assay to rapidly differentiate the genotype 390T, associated with zymodemes MON-1, MON-72 and MON-201, evidencing a partial agreement between genotyping results and MLEE. The assay has been successfully applied to L. infantum clinical isolates and clinical samples. CONCLUSIONS: A HRM-based assay for rapid identification of genotypes associated with the most common L. infantum zymodemes in the Mediterranean basin has been developed and its potential application in epidemiological research for L. infantum population screening, without parasite isolation and culturing, has been demonstrated.


Assuntos
Leishmania infantum/genética , Leishmaniose Cutânea/parasitologia , Leishmaniose Visceral/parasitologia , Polimorfismo Genético/genética , Genótipo , Glucose-6-Fosfato Isomerase/genética , Glucosefosfato Desidrogenase/genética , Proteínas de Helminto/genética , Humanos , Isocitrato Desidrogenase/genética , Isoenzimas/genética , Leishmania infantum/enzimologia , Leishmania infantum/isolamento & purificação , Manose-6-Fosfato Isomerase/genética , Fosfoglucomutase/genética , Fosfogluconato Desidrogenase/genética , Filogenia , Análise de Sequência de DNA
14.
PLoS One ; 12(12): e0189172, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29211780

RESUMO

SCOPE: This study aimed to analyse the prevalence, antibiotic resistance and genetic relatedness of P. aeruginosa isolates obtained from potable and recreational water samples (n. 8,351) collected from different settings (swimming pools, n. 207; healthcare facilities, n 1,684; accommodation facilities, n. 1,518; municipal waterworks, n. 4,500; residential buildings, n. 235). Possible mechanisms underlying resistance to imipenem, with particular focus on those involving oprD-based uptake, were also explored. METHODS AND RESULTS: Isolation and identification of Pseudomonas aeruginosa was performed according to the standardized procedure UNI EN ISO 16266:2008 followed by PCR confirmation. Antibiotic Susceptibility testing was conducted according to EUCAST standardized disk diffusion method. Genetic relatedness of strains was carried out by RAPD. The sequence of the oprD gene was analyzed by standard method. Fifty-three samples (0.63%) were positive for P. aeruginosa, of which 10/207 (4.83%) were from swimming pools. Five isolates (9.43%) were resistant to imipenem, one to Ticarcillin + Clavulanate, one to both Piperacillin and Ticarcillin + Clavulanate. The highest isolation rate of imipenem resistant P. aeruginosa was observed in swimming pool water. Identical RAPD profiles were found in isolates from the same location in the same year or even in different years. CONCLUSIONS: Imipenem resistant strains were identified as carbapenemase-negative and resistance has been associated with inactivating mutations within the oprD gene, with a concomitant loss of porin. RAPD results proved that a water system can remain colonized by one strain for long periods and the contamination may be difficult to eradicate. This study has revealed the presence of P. aeruginosa in different water samples, including resistant strains, especially in swimming pools, and confirmed the role of porins as a contributing factor in carbapenem resistance in Gram-negative bacteria.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Imipenem/farmacologia , Porinas/genética , Pseudomonas aeruginosa/isolamento & purificação , Microbiologia da Água , Genes Bacterianos , Itália , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Reação em Cadeia da Polimerase em Tempo Real
15.
Sci Rep ; 7(1): 4259, 2017 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-28652566

RESUMO

The aim of this study was to develop and validate a high resolution melting (HRM) method for the rapid, accurate identification of the various harmful diatom Pseudo-nitzschia species in marine environments. Pseudo-nitzschia has a worldwide distribution and some species are toxic, producing the potent domoic acid toxin, which poses a threat to both human and animal health. Hence, it is important to identify toxic Pseudo-nitzschia species. A pair of primers targeting the LSU rDNA of the genus Pseudo-nitzschia was designed for the development of the assay and its specificity was validated using 22 control DNAs of the P. calliantha, P. delicatissima/P. arenysensis complex and P. pungens. The post-PCR HRM assay was applied to numerous unidentified Pseudo-nitzschia strains isolated from the northwestern Adriatic Sea (Mediterranean Sea), and it was able to detect and discriminate three distinct Pseudo-nitzschia taxa from unidentified samples. Moreover, the species-specific identification of Pseudo-nitzschia isolates by the HRM assay was consistent with phylogenetic analyses. The HRM assay was specific, robust and rapid when applied to high numbers of cultured samples in order to taxonomically identify Pseudo-nitzschia isolates recovered from environmental samples.


Assuntos
DNA Ribossômico/genética , Diatomáceas/genética , Filogenia , Animais , Diatomáceas/isolamento & purificação , Diatomáceas/patogenicidade , Humanos , Toxinas Marinhas/genética , Toxinas Marinhas/isolamento & purificação , Mar Mediterrâneo , Desnaturação de Ácido Nucleico/genética
16.
Parasit Vectors ; 10(1): 239, 2017 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-28511704

RESUMO

BACKGROUND: Leishmaniasis is a neglected disease caused by many Leishmania species, belonging to subgenera Leishmania (Leishmania) and Leishmania (Viannia). Several qPCR-based molecular diagnostic approaches have been reported for detection and quantification of Leishmania species. Many of these approaches use the kinetoplast DNA (kDNA) minicircles as the target sequence. These assays had potential cross-species amplification, due to sequence similarity between Leishmania species. Previous works demonstrated discrimination between L. (Leishmania) and L. (Viannia) by SYBR green-based qPCR assays designed on kDNA, followed by melting or high-resolution melt (HRM) analysis. Importantly, these approaches cannot fully distinguish L. (L.) infantum from L. (L.) amazonensis, which can coexist in the same geographical area. METHODS: DNA from 18 strains/isolates of L. (L.) infantum, L. (L.) amazonensis, L. (V.) braziliensis, L. (V.) panamensis, L. (V.) guyanensis, and 62 clinical samples from L. (L.) infantum-infected dogs were amplified by a previously developed qPCR (qPCR-ML) and subjected to HRM analysis; selected PCR products were sequenced using an ABI PRISM 310 Genetic Analyzer. Based on the obtained sequences, a new SYBR-green qPCR assay (qPCR-ama) intended to amplify a minicircle subclass more abundant in L. (L.) amazonensis was designed. RESULTS: The qPCR-ML followed by HRM analysis did not allow discrimination between L. (L.) amazonensis and L. (L.) infantum in 53.4% of cases. Hence, the novel SYBR green-based qPCR (qPCR-ama) has been tested. This assay achieved a detection limit of 0.1 pg of parasite DNA in samples spiked with host DNA and did not show cross amplification with Trypanosoma cruzi or host DNA. Although the qPCR-ama also amplified L. (L.) infantum strains, the Cq values were dramatically increased compared to qPCR-ML. Therefore, the combined analysis of Cq values from qPCR-ML and qPCR-ama allowed to distinguish L. (L.) infantum and L. (L.) amazonensis in 100% of tested samples. CONCLUSIONS: A new and affordable SYBR-green qPCR-based approach to distinguish between L. (L.) infantum and L. (L.) amazonensis was developed exploiting the major abundance of a minicircle sequence rather than targeting a hypothetical species-specific sequence. The fast and accurate discrimination between these species can be useful to provide adequate prognosis and treatment.


Assuntos
DNA de Cinetoplasto/genética , Doenças do Cão/diagnóstico , Leishmania infantum/genética , Leishmania/genética , Leishmaniose/veterinária , Animais , Benzotiazóis , Primers do DNA , Diaminas , Doenças do Cão/parasitologia , Cães , Leishmania/classificação , Leishmania braziliensis/genética , Leishmaniose/diagnóstico , Leishmaniose/parasitologia , Compostos Orgânicos , Quinolinas , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade , Análise de Sequência de DNA , Especificidade da Espécie , Temperatura de Transição
17.
Plasmid ; 90: 10-14, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28137396

RESUMO

Plasmids are the main vectors of resistance and virulence genes in Enterobacteriaceae and plasmid typing is essential for the analysis of evolution, epidemiology and spread of antibacterial resistance. The PCR-Based Replicon Typing (PBRT), developed by Carattoli et al. in 2005, was an efficient method for plasmid identification and typing in Enterobacteriaceae. The 2005 PBRT scheme detected 18 replicons in 8 PCR reactions. Recently, the identification of novel replicons and plasmid types requested an update of the PBRT scheme. A commercial PBRT-KIT was devised for the identification of 28 different replicons in 8 multiplex PCRs. Here we report sensitivity and specificity of the PBRT-KIT carried out in comparison with the 2005 PBRT. The analysis of plasmid content was performed on forty-two enterobacterial strains from different sources, containing different replicon content. The 2005 PBRT identified replicons in 76.2% of the strains. The PBRT-KIT detected replicons in 100% of the analyzed strains, demonstrating increasing sensitivity and specificity of the commercial test with respect to the former 2005 PBRT scheme.


Assuntos
DNA Bacteriano/genética , Farmacorresistência Bacteriana/genética , Enterobacteriaceae/classificação , Plasmídeos/classificação , Replicon , Técnicas de Tipagem Bacteriana/métodos , Enterobacteriaceae/genética , Enterobacteriaceae/metabolismo , Reação em Cadeia da Polimerase Multiplex , Plasmídeos/química , Plasmídeos/metabolismo , Kit de Reagentes para Diagnóstico/normas , Sensibilidade e Especificidade
18.
Methods Mol Biol ; 1404: 181-192, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27076298

RESUMO

The advent of new technologies in recent years has revolutionized the methods by which pathogens are studied and at the same time it has provided new tools to design vaccines against infections for which vaccine development has so far been unsuccessful. The availability of genomic data provides the basis for the reverse vaccinology approach, a biotechnological strategy that uses bioinformatics analysis of microbial genome data for the in silico selection of potential vaccine candidates for the development of protein-based vaccines. The antigens selected by reverse vaccinology can be produced as recombinant proteins and subjected to further in vitro screening assays before in vivo experiments to assess immunogenicity and protection. The reverse vaccinology approach has been applied to several pathogens affecting human health, but also to marine bacteria, including Photobacterium damselae subsp. piscicida causing significant harm in marine aquaculture.


Assuntos
Vacinas Bacterianas/imunologia , Biologia Computacional/métodos , Peixes/microbiologia , Pasteurella/imunologia , Animais , Antígenos de Bactérias/imunologia , Vacinas Bacterianas/genética , Vacinas Bacterianas/metabolismo , Adesão Celular , Linhagem Celular
19.
Future Sci OA ; 1(4): FSO62, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28031914

RESUMO

BACKGROUND: Preimplantation genetic diagnosis (PGD) currently relies on biopsy of one or few embryo cells. Our aim was to evaluate the embryo extracellular matrices (spent medium and blastocoele fluid) as source of DNA for embryo genotyping. RESULTS/METHODOLOGY: We first evaluated the amplifiability and the amount of genomic DNA in spent embryo culture media from day 3 (n = 32) and day 5/6 (n = 54). Secondly, we evaluated the possibility to genotype the MTHFR polymorphism C677T from media at day 5/6 (n = 8) and blastocoele fluids (n = 9) by direct sequencing. The C677T polymorphism detection rate was 62.5 and 44.4% in medium and fluid, respectively. CONCLUSION: A noninvasive approach for embryo genotyping was possible, but still with limitations due to low detection rate and possible allele dropout.

20.
J Immunol Res ; 2014: 793817, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24982922

RESUMO

Photobacteriosis or fish pasteurellosis is a bacterial disease affecting wild and farm fish. Its etiological agent, the gram negative bacterium Photobacterium damselae subsp. piscicida, is responsible for important economic losses in cultured fish worldwide, in particular in Mediterranean countries and Japan. Efforts have been focused on gaining a better understanding of the biology of the pathogenic microorganism and its natural hosts with the aim of developing effective vaccination strategies and diagnostic tools to control the disease. Conventional vaccinology has thus far yielded unsatisfactory results, and recombinant technology has been applied to identify new antigen candidates for the development of subunit vaccines. Furthermore, molecular methods represent an improvement over classical microbiological techniques for the identification of P. damselae subsp. piscicida and the diagnosis of the disease. The complete sequencing, annotation, and analysis of the pathogen genome will provide insights into the pathogen laying the groundwork for the development of vaccines and diagnostic methods.


Assuntos
Vacinas Bacterianas/genética , Doenças dos Peixes/diagnóstico , Doenças dos Peixes/prevenção & controle , Genoma Bacteriano , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária , Photobacterium/genética , Animais , Antibacterianos/farmacologia , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/imunologia , Farmacorresistência Bacteriana , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Peixes , Infecções por Bactérias Gram-Negativas/diagnóstico , Infecções por Bactérias Gram-Negativas/imunologia , Photobacterium/efeitos dos fármacos , Photobacterium/imunologia , Análise de Sequência de DNA , Vacinação , Vacinas de Subunidades Antigênicas , Vacinas Sintéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA