Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38746397

RESUMO

The transcriptional coactivators EP300 and CREBBP are critical regulators of gene expression that share high sequence identity but exhibit non-redundant functions in basal and pathological contexts. Here, we report the development of a bifunctional small molecule, MC-1, capable of selectively degrading EP300 over CREBBP. Using a potent aminopyridine-based inhibitor of the EP300/CREBBP catalytic domain in combination with a VHL ligand, we demonstrate that MC-1 preferentially degrades EP300 in a proteasome-dependent manner. Mechanistic studies reveal that selective degradation cannot be predicted solely by target engagement or ternary complex formation, suggesting additional factors govern paralogue-specific degradation. MC-1 inhibits cell proliferation in a subset of cancer cell lines and provides a new tool to investigate the non-catalytic functions of EP300 and CREBBP. Our findings expand the repertoire of EP300/CREBBP-targeting chemical probes and offer insights into the determinants of selective degradation of highly homologous proteins.

2.
ACS Med Chem Lett ; 12(6): 887-892, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34141066

RESUMO

Remodelin is a putative small molecule inhibitor of the RNA acetyltransferase NAT10 which has shown preclinical efficacy in models of the premature aging disease Hutchinson-Gilford Progeria Syndrome (HGPS). Here we evaluate remodelin's assay interference characteristics and effects on NAT10-catalyzed RNA cytidine acetylation. We find the remodelin chemotype constitutes a cryptic assay interference compound, which does not react with small molecule thiols but demonstrates protein reactivity in ALARM NMR and proteome-wide affinity profiling assays. Biophysical analyses find no direct evidence for interaction of remodelin with the NAT10 acetyltransferase active site. Cellular studies verify that N4-acetylcytidine (ac4C) is a nonredundant target of NAT10 activity in human cell lines and find that this RNA modification is not affected by remodelin treatment in several orthogonal assays. These studies display the potential for remodelin's chemotype to interact with multiple protein targets in cells and indicate remodelin should not be applied as a specific chemical inhibitor of NAT10-catalyzed RNA acetylation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA