Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Front Pharmacol ; 15: 1387057, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38818381

RESUMO

The photobiological damage that certain drugs or their metabolites can photosensitize in proteins is generally associated with the nature of the excited species that are generated upon interaction with UVA light. In this regard, the photoinduced damage of the anticancer drug gefitinib (GFT) and its two main photoactive metabolites GFT-M1 and GFT-M2 in cellular milieu was recently investigated. With this background, the photophysical properties of both the drug and its metabolites have now been studied in the presence of the two main transport proteins of human plasma, i.e., serum albumin (HSA) and α1-acid glycoprotein (HAG) upon UVA light excitation. In general, the observed photobehavior was strongly affected by the confined environment provided by the protein. Thus, GFT-M1 (which exhibits the highest phototoxicity) showed the highest fluorescence yield arising from long-lived HSA-bound phenolate-like excited species. Conversely, locally excited (LE) states were formed within HAG, resulting in lower fluorescence yields. The reserve was true for GFT-M2, which despite being also a phenol, led mainly to formation of LE states within HSA, and phenolate-like species (with a minor contribution of LE) inside HAG. Finally, the parent drug GFT, which is known to form LE states within HSA, exhibited a parallel behavior in the two proteins. In addition, determination of the association constants by both absorption and emission spectroscopy revealed that the two metabolites bind stronger to HSA than the parent drug, whereas smaller differences were observed for HAG. This was further confirmed by studying the competing interactions between GFT or its metabolites with the two proteins using fluorescence measurements. These above experimental findings were satisfactorily correlated with the results obtained by means of molecular dynamics (MD) simulations, which revealed the high affinity binding sites, the strength of interactions and the involved amino acid residues. In general, the differences observed in the photobehavior of the drug and its two photoactive metabolites in protein media are consistent with their relative photosensitizing potentials.

2.
Nanoscale ; 16(20): 9754-9769, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38625086

RESUMO

Pnictogen nanomaterials have recently attracted researchers' attention owing to their promising properties in the field of electronic, energy storage, and nanomedicine applications. Moreover, especially in the case of heavy pnictogens, their chemistry allows for nanomaterial synthesis using both top-down and bottom-up approaches, yielding materials with remarkable differences in terms of morphology, size, yield, and properties. In this study, we carried out a comprehensive structural and spectroscopic characterization of antimony-based nanomaterials (Sb-nanomaterials) obtained by applying different production methodologies (bottom-up and top-down routes) and investigating the influence of the synthesis on their oxidation state and stability in a biological environment. Indeed, in situ XANES/EXAFS studies of Sb-nanomaterials incubated in cell culture media were carried out, unveiling a different oxidation behavior. Furthermore, we investigated the cytotoxic effects of Sb-nanomaterials on six different cell lines: two non-cancerous (FSK and HEK293) and four cancerous (HeLa, SKBR3, THP-1, and A549). The results reveal that hexagonal antimonene (Sb-H) synthesized using a colloidal approach oxidizes the most and faster in cell culture media compared to liquid phase exfoliated (LPE) antimonene, suffering acute degradation and anticipating well-differentiated toxicity from its peers. In addition, the study highlights the importance of the synthetic route for the Sb-nanomaterials as it was observed to influence the chemical evolution of Sb-H into toxic Sb oxide species, playing a critical role in its ability to rapidly eliminate tumor cells. These findings provide insights into the mechanisms underlying the dark cytotoxicity of Sb-H and other related Sb-nanomaterials, underlining the importance of developing therapies based on controlled and on-demand nanomaterial oxidation.


Assuntos
Antimônio , Nanoestruturas , Oxirredução , Humanos , Antimônio/química , Nanoestruturas/química , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Células HEK293 , Células HeLa , Células A549
3.
Foods ; 13(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38611284

RESUMO

Heavy metals (HMs) are natural elements present in the Earth's crust, characterised by a high atomic mass and a density more than five times higher than water. Despite their origin from natural sources, extensive usage and processing of raw materials and their presence as silent poisons in our daily products and diets have drastically altered their biochemical balance, making them a threat to the environment and human health. Particularly, the food chain polluted with toxic metals represents a crucial route of human exposure. Therefore, the impact of HMs on human health has become a matter of concern because of the severe chronic effects induced by their excessive levels in the human body. Chelation therapy is an approved valid treatment for HM poisoning; however, despite the efficacy demonstrated by chelating agents, various dramatic side effects may occur. Numerous data demonstrate that dietary components and phytoantioxidants play a significant role in preventing or reducing the damage induced by HMs. This review summarises the role of various phytochemicals, plant and herbal extracts or probiotics in promoting human health by mitigating the toxic effects of different HMs.

4.
Biomed Pharmacother ; 167: 115593, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37793275

RESUMO

Talazoparib (TLZ) is a poly(adenosine diphosphate [ADP]-ribose) polymerase inhibitor employed for the treatment of breast cancer. This drug displays an absorption band in the UVA region, and therefore investigation of the possible phototoxic side-effects associated to its administration results of enormous relevance. In this context, we describe here a photochemical and photobiological study to ascertain the photosafety profile of TLZ. Concerning transient species, the singlet and triplet excited states of TLZ were detected by fluorescence (λmax em = 440 nm) and laser flash photolysis experiments (λmax abs = 400 nm), respectively. Remarkably, TLZ irradiation with UVA light in aqueous solution resulted in formation of a stable photooxidated product, TLZ-P, whose absorption band is extended until the visible region. From in vitro experiments, phototoxicity was revealed for the parent drug by neutral red uptake (NRU) assays, with a PIF value of ca 7; besides, TLZ induced formation of reactive oxygen species (ROS) and produced significant damage to both proteins and DNA. By contrast, the singlet and triplet excited states of TLZ-P were not detected, and no photodamage was observed in the NRU experiments. Overall, the results indicate that TLZ induces phototoxicity, whereas its photoproduct exhibits photosafety.


Assuntos
Dermatite Fototóxica , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Luz , Espécies Reativas de Oxigênio/metabolismo , Fármacos Fotossensibilizantes , Preparações Farmacêuticas
5.
Front Pharmacol ; 14: 1208075, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351506

RESUMO

Gefitinib (GFT) is a selective epidermal growth factor receptor (EGFR) inhibitor clinically used for the treatment of patients with non-small cell lung cancer. Bioactivation by mainly Phase I hepatic metabolism leads to chemically reactive metabolites such as O-Demethyl gefitinib (DMT-GFT), 4-Defluoro-4-hydroxy gefitinib (DF-GFT), and O-Demorpholinopropyl gefitinib (DMOR-GFT), which display an enhanced UV-light absorption. In this context, the aim of the present study is to investigate the capability of gefitinib metabolites to induce photosensitivity disorders and to elucidate the involved mechanisms. According to the neutral red uptake (NRU) phototoxicity test, only DF-GFT metabolite can be considered non-phototoxic to cells with a photoirritation factor (PIF) close to 1. Moreover, DMOR-GFT is markedly more phototoxic than the parent drug (PIF = 48), whereas DMT-GFT is much less phototoxic (PIF = 7). Using the thiobarbituric acid reactive substances (TBARS) method as an indicator of lipid photoperoxidation, only DMOR-GFT has demonstrated the ability to photosensitize this process, resulting in a significant amount of TBARS (similar to ketoprofen, which was used as the positive control). Protein photooxidation monitored by 2,4-dinitrophenylhydrazine (DNPH) derivatization method is mainly mediated by GFT and, to a lesser extent, by DMOR-GFT; in contrast, protein oxidation associated with DMT-GFT is nearly negligible. Interestingly, the damage to cellular DNA as revealed by the comet assay, indicates that DMT-GFT has the highest photogenotoxic potential; moreover, the DNA damage induced by this metabolite is hardly repaired by the cells after a time recovery of 18 h. This could ultimately result in mutagenic and carcinogenic effects. These results could aid oncologists when prescribing TKIs to cancer patients and, thus, establish the conditions of use and recommend photoprotection guidelines.

6.
Antibiotics (Basel) ; 12(1)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36671313

RESUMO

Dental caries is a biofilm-mediated disease that represents a worldwide oral health issue. Streptococcus mutans has been ascertained as the main cariogenic pathogen responsible for human dental caries, with a high ability to form biofilms, regulated by the quorum sensing. Diarylureas represent a class of organic compounds that show numerous biological activities, including the antimicrobial one. Two small molecules belonging to this class, specifically to diphenylureas, BPU (1,3-bis[3,5-bis(trifluoromethyl)phenyl]urea) and DMTU (1,3-di-m-tolyl-urea), showed interesting results in studies regarding the antimicrobial activity against the cariogenic bacterium S. mutans. Since there are not many antimicrobials used for the prevention and treatment of caries, further studies on these two interesting compounds and other diarylureas against S. mutans may be useful to design new effective agents for the treatment of caries with generally low cytotoxicity.

7.
Free Radic Biol Med ; 194: 42-51, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36375737

RESUMO

Hepatitis C, a liver inflammation caused by the hepatitis C virus (HCV), is treated with antiviral drugs. In this context, simeprevir (SIM) is an NS3/4A protease inhibitor used in HCV genotypes 1 and 4. It is orally administered and achieves high virological cure rates. Among adverse reactions associated with SIM treatment, photosensitivity reactions have been reported. In the present work, it is clearly shown that SIM is markedly phototoxic, according to the in vitro NRU assay using BALB/c 3T3 mouse fibroblast. This result sheds light on the nature of the photosensitivity reactions induced by SIM in HCV patients, suggesting that porphyrin elevation in patients treated with SIM may not be the only mechanism responsible for SIM-associated photosensitivity. Moreover, lipid photoperoxidation and protein photooxidation assays, using human skin fibroblasts (FSK) and human serum albumin (HSA), respectively, reveal the capability of this drug to promote photodamage to cellular membranes. Also, DNA photo lesions induced by SIM are noticed through comet assay in FSK cells. Photochemical and photobiological studies on the mechanism of SIM-mediated photodamage to biomolecules indicate that the key transient species generated upon SIM irradiation is the triplet excited state. This species is efficiently quenched by oxygen giving rise to singlet oxygen, which is responsible for the oxidation of lipids and DNA (Type II mechanism). In the presence of HSA, the photobehavior is dominated by binding to site 3 of the protein, to give a stable SIM@HSA complex. Inside the complex, quenching of the triplet excited state is less efficient, which results in a longer triplet lifetime and in a decreased singlet oxygen formation. Hence, SIM-mediated photooxidation of the protein is better explained through a radical (Type I) mechanism.


Assuntos
Hepatite C , Oxigênio Singlete , Animais , Camundongos , Humanos , Oxigênio Singlete/química , Simeprevir , Inibidores de Proteases , Antivirais/farmacologia , Estresse Oxidativo , DNA/metabolismo
8.
Molecules ; 27(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36500655

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was the seventh known human coronavirus, and it was identified in Wuhan, Hubei province, China, in 2020. It caused the highly contagious disease called coronavirus disease 2019 (COVID-19), declared a global pandemic by the World Health Organization (WHO) on 11 March 2020. A great number of studies in the search of new therapies and vaccines have been carried out in these three long years, producing a series of successes; however, the need for more effective vaccines, therapies and other solutions is still being pursued. This review represents a tracking shot of the current pharmacological therapies used for the treatment of COVID-19.


Assuntos
COVID-19 , Vacinas , Humanos , SARS-CoV-2 , Pandemias/prevenção & controle , China
9.
Nanoscale Adv ; 4(24): 5281-5289, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36540110

RESUMO

Ligand-free sub-nanometer metal clusters (MCs) of Pt, Ir, Rh, Au and Cu, are prepared here in neat water and used as extremely active (nM) antitumoral agents for HeLa and A2870 cells. The preparation just consists of adding the biocompatible polymer ethylene-vinyl alcohol (EVOH) to an aqueous solution of the corresponding metal salt, to give liters of a MC solution after filtration of the polymer. Since the MC solution is composed of just neat metal atoms and water, the intrinsic antitumoral activity of the different sub-nanometer metal clusters can now fairly be evaluated. Pt clusters show an IC50 of 0.48 µM for HeLa and A2870 cancer cells, 23 times higher than that of cisplatin and 1000 times higher than that of Pt NPs, and this extremely high cytotoxicity also occurs for cisplatin-resistant (A2870 cis) cells, with a resistance factor of 1.4 (IC50 = 0.68 µM). Rh and Ir clusters showed an IC50 ∼ 1 µM. Combined experimental and computational studies support an enhanced internalization and cytotoxic activation.

10.
Chem Sci ; 13(33): 9644-9654, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36091919

RESUMO

Photosensitization by drugs is directly related with the excited species and the photoinduced processes arising from interaction with UVA light. In this context, the ability of gefitinib (GFT), a tyrosine kinase inhibitor (TKI) used for the treatment of a variety of cancers, to induce phototoxicity and photooxidation of proteins has recently been demonstrated. In principle, photodamage can be generated not only by a given drug but also by its photoactive metabolites that maintain the relevant chromophore. In the present work, a complete study of O-desmorpholinopropyl gefitinib (GFT-MB) has been performed by means of fluorescence and ultrafast transient absorption spectroscopies, in addition to molecular dynamics (MD) simulations. The photobehavior of the GFT-MB metabolite in solution is similar to that of GFT. However, when the drug or its metabolite are in a constrained environment, i.e. within a protein, their behavior and the photoinduced processes that arise from their interaction with UVA light are completely different. For GFT in complex with human serum albumin (HSA), locally excited (LE) singlet states are mainly formed; these species undergo photoinduced electron transfer with Tyr and Trp. By contrast, since GFT-MB is a phenol, excited state proton transfer (ESPT) to form phenolate-like excited species might become an alternative deactivation pathway. As a matter of fact, the protein-bound metabolite exhibits higher fluorescence yields and longer emission wavelengths and lifetimes than GFT@HSA. Ultrafast transient absorption measurements support direct ESPT deprotonation of LE states (rather than ICT), to form phenolate-like species. This is explained by MD simulations, which reveal a close interaction between the phenolic OH group of GFT-MB and Val116 within site 3 (subdomain IB) of HSA. The reported findings are relevant to understand the photosensitizing properties of TKIs and the role of biotransformation in this type of adverse side effects.

11.
Sci Rep ; 12(1): 3434, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35236893

RESUMO

Rucaparib (RCP) is a potent selective inhibitor of both PARP-1 and PARP-2 enzymes that induces synthetic lethality in cancer cells. It is used for the treatment of breast and ovarian tumors harboring deleterious germline or somatic cancer susceptibility genes mutations. Although RCP has an indole chromophore in its structure, it displays a bathochromic shift of the absorption band towards the UVA region of sunlight, thus extending the active fraction of solar light able to produce photosensitivity reactions. In this context, it is highly interesting to study the photo(geno)toxicity disorders associated with this drug, bearing in mind that, for dermatologists it is crucial to understand the toxicity mechanism to improve clinical management. In the present work, RCP has shown to be potentially phototoxic, as observed in the neutral red uptake phototoxicity test. Moreover, this significant phototoxicity is attributed to both proteins and genomic DNA, as revealed in the protein photooxidation and comet assays. The results obtained are highly relevant concerning RCP photosafety and become clinically important in the context of identification of the cutaneous adverse events that can be associated with the targeted therapies. Interestingly, this is the first example of a PARP inhibitor able to induce photosensitized damage to biomolecules.


Assuntos
Antineoplásicos , Dermatite Fototóxica , Antineoplásicos/efeitos adversos , Ensaio Cometa , Humanos , Indóis , Inibidores de Poli(ADP-Ribose) Polimerases/efeitos adversos
12.
Chem Sci ; 12(36): 12027-12035, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34667568

RESUMO

Gefitinib (GFT) is a tyrosine kinase inhibitor currently used for the treatment of metastatic non-small cell lung cancer. Although it has been suggested that GFT can be phototoxic, there are no systematic studies on this issue. Here, the photosensitizing potential of GFT has been assessed by means of NRU assays and protein photooxidation. In addition, a thorough photophysical study is presented based on ultrafast transient absorption spectroscopy, fluorescence and laser flash photolysis. Transient species generated after excitation of GFT have been characterized in solution and in biological environments (i.e. HSA and HaCaT cells) to gain insight into the mechanisms involved in photodamage. The photobehavior of GFT was strongly medium-dependent. Excitation of the drug resulted in the formation of locally excited (LE) singlet states (1GFT*), which were found to be the main emissive species in non-polar solvents and also within HSA and HaCaT cells. By contrast, in polar solvents, LE states rapidly evolved (∼1 ps) towards the formation of longer-lived intramolecular charge transfer (ICT) states. The triplet excited state of GFT (3GFT*) can be formed through intersystem crossing from 1GFT* in non-polar solvents and from ICT states in the polar ones, or in the particular case of ethanol, by photosensitization using 2-methoxyacetophenone as an energy donor. In the HSA environment, 3GFT* was hardly detected due to quenching of its LE 1GFT* precursor by Trp through an electron transfer process. Accordingly, HSA photooxidation by GFT was demonstrated using the protein carbonylation method. In summary, a good correlation is established between the photophysical behavior and the photobiological properties of GFT, which provides a mechanistic basis for the observed phototoxicity.

13.
Arch Toxicol ; 95(1): 169-178, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32815004

RESUMO

The epidermal growth factor receptors EGFR and HER2 are the main targets for tyrosine kinase inhibitors (TKIs). The quinazoline derivative lapatinib (LAP) is used since 2007 as dual TKI in the treatment of metastatic breast cancer and currently, it is used as an oral anticancer drug for the treatment of solid tumors such as breast and lung cancer. Although hepatotoxicity is its main side effect, it makes sense to investigate the ability of LAP to induce photosensitivity reactions bearing in mind that BRAF (serine/threonine-protein kinase B-Raf) inhibitors display a considerable phototoxic potential and that afloqualone, a quinazoline-marketed drug, causes photodermatosis. Metabolic bioactivation of LAP by CYP3A4 and CYP3A5 leads to chemically reactive N-dealkylated (N-LAP) and O-dealkylated (O-LAP) derivatives. In this context, the aim of the present work is to explore whether LAP and its N- and O-dealkylated metabolites can induce photosensitivity disorders by evaluating their photo(geno)toxicity through in vitro studies, including cell viability as well as photosensitized protein and DNA damage. As a matter of fact, our work has demonstrated that not only LAP, but also its metabolite N-LAP have a clear photosensitizing potential. They are both phototoxic and photogenotoxic to cells, as revealed by the 3T3 NRU assay and the comet assay, respectively. By contrast, the O-LAP does not display relevant photobiological properties. Remarkably, the parent drug LAP shows the highest activity in membrane phototoxicity and protein oxidation, whereas N-LAP is associated with the highest photogenotoxicity, through oxidation of purine bases, as revealed by detection of 8-Oxo-dG.


Assuntos
Antineoplásicos/toxicidade , Dano ao DNA , Fibroblastos/efeitos dos fármacos , Lapatinib/toxicidade , Transtornos de Fotossensibilidade/induzido quimicamente , Inibidores de Proteínas Quinases/toxicidade , Pele/efeitos dos fármacos , Ativação Metabólica , Animais , Antineoplásicos/metabolismo , Células 3T3 BALB , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Citocromo P-450 CYP3A/metabolismo , Remoção de Radical Alquila , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibroblastos/efeitos da radiação , Humanos , Lapatinib/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Processos Fotoquímicos , Transtornos de Fotossensibilidade/genética , Transtornos de Fotossensibilidade/metabolismo , Transtornos de Fotossensibilidade/patologia , Carbonilação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/metabolismo , Pele/metabolismo , Pele/patologia
14.
Front Pharmacol ; 11: 576495, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192518

RESUMO

Lapatinib (LAP) is an anticancer drug generally used to treat breast and lung cancer. It exhibits hypersensitivity reactions in addition to dermatological adverse effects and photosensitivity. Moreover, LAP binds to serum proteins and is readily biotransformed in humans, giving rise to several metabolites, such as N- and O-dealkylated products (N-LAP and O-LAP, respectively). In this context, the aim of the present work is to obtain key information on drug@protein complexation, the first step involved in a number of hypersensitivity reactions, by a combination of fluorescence, femtosecond transient absorption spectroscopy and molecular dynamics (MD) simulations. Following this approach, the behavior of LAP and its metabolites has been investigated in the presence of serum proteins, such as albumins and α1-acid glycoproteins (SAs and AGs, respectively) from human and bovine origin. Fluorescence results pointed to a higher affinity of LAP and its metabolites to human proteins; the highest one was found for LAP@HSA. This is associated to the coplanar orientation adopted by the furan and quinazoline rings of LAP, which favors emission from long-lived (up to the ns time-scale) locally-excited (LE) states, disfavoring population of intramolecular charge transfer (ICT) states. Moreover, the highly constrained environment provided by subdomain IB of HSA resulted in a frozen conformation of the ligand, contributing to fluorescence enhancement. Computational studies were clearly in line with the experimental observations, providing valuable insight into the nature of the binding sites and the conformational arrangement of the ligands inside the protein cavities. Besides, a good correlation was found between the calculated binding energies for each ligand@protein complex and the relative affinities observed in competition experiments.

15.
Chemistry ; 26(68): 15922-15930, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-32585059

RESUMO

Lapatinib (LAP) is an anticancer drug, which is metabolized to the N- and O-dealkylated products (N-LAP and O-LAP, respectively). In view of the photosensitizing potential of related drugs, a complete experimental and theoretical study has been performed on LAP, N-LAP and O-LAP, both in solution and upon complexation with human serum albumin (HSA). In organic solvents, coplanar locally excited (LE) emissive states are generated; they rapidly evolve towards twisted intramolecular charge-transfer (ICT) states. By contrast, within HSA only LE states are detected. Accordingly, femtosecond transient absorption reveals a very fast switching (ca. 2 ps) from LE (λmax =550 nm) to ICT states (λmax =480 nm) in solution, whereas within HSA the LE species become stabilized and live much longer (up to the ns scale). Interestingly, molecular dynamics simulation studies confirm that the coplanar orientation is preferred for LAP (or to a lesser extent N-LAP) within HSA, explaining the experimental results.


Assuntos
Antineoplásicos , Lapatinib , Antineoplásicos/química , Humanos , Lapatinib/química , Simulação de Dinâmica Molecular , Albumina Sérica Humana/química , Análise Espectral
16.
Sci Rep ; 10(1): 6879, 2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32327675

RESUMO

The human genome is constantly attacked by endogenous and exogenous agents (ultraviolet light, xenobiotics, reactive oxygen species), which can induce chemical transformations leading to DNA lesions. To combat DNA damage, cells have developed several repair mechanisms; however, if the repair is defective, DNA lesions lead to permanent mutations. Single-cell gel electrophoresis (COMET assay) is a sensitive and well-established technique for quantifying DNA damage in individual cells. Nevertheless, this tool lacks relationship with mutagenesis. Therefore, to identify errors that give rise to mutations it would be convenient to test an alternative known procedure, such as next generation sequencing (NGS). Thus, the present work aims to evaluate the photomutagenicity of neuroleptic drug chlorpromazine (CPZ), and its N-demethylated metabolites using COMET assay and to test NGS as an alternative method to assess photomutagenesis. In this context, upon exposure to UVA radiation, COMET assay reveals CPZ-photosensitized DNA damage partially repaired by cells. Conversely with this result, metabolites demethylchlorpromazine (DMCPZ) and didemethylchlorpromazine (DDMCPZ) promote extensive DNA-photodamage, hardly repaired under the same conditions. Parallel assessment of mutagenesis by NGS is consistent with these results with minor discrepancies for DDMCPZ. To our knowledge, this is the first example demonstrating the utility of NGS for evaluating drug-induced photomutagenicity.


Assuntos
Clorpromazina/toxicidade , Desmetilação , Sequenciamento de Nucleotídeos em Larga Escala , Metaboloma , Mutagênese/genética , Linhagem Celular , Clorpromazina/química , Desmetilação/efeitos dos fármacos , Variação Genética , Humanos
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 226: 117652, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31654902

RESUMO

Transient absorption spectroscopy in combination with in silico methods has been employed to study the interactions between human serum albumin (HSA) and the anti-psychotic agent chlorpromazine (CPZ) as well as its two demethylated metabolites (MCPZ and DCPZ). Thus, solutions containing CPZ, MCPZ or DCPZ and HSA (molar ligand:protein ratios between 1:0 and 1:3) were submitted to laser flash photolysis and the ΔAmax value at λ = 470 nm, corresponding to the triplet excited state, was monitored. In all cases, the protein-bound ligand exhibited higher ΔAmax values measured after the laser pulse and were also considerably longer-lived than the non-complexed forms. This is in agreement with an enhanced hydrophilicity of the metabolites, due to the replacement of methyl groups with H that led to a lower extent of protein binding. For the three compounds, laser flash photolysis displacement experiments using warfarin or ibuprofen indicated Sudlow site I as the main binding site. Docking and molecular dynamics simulation studies revealed that the binding mode of the two demethylated ligands with HSA would be remarkable different from CPZ, specially for DCPZ, which appears to come from the different ability of their terminal ammonium groups to stablish hydrogen bonding interactions with the negatively charged residues within the protein pocket (Glu153, Glu292) as well as to allocate the methyl groups in an apolar environment. DCPZ would be rotated 180° in relation to CPZ locating the aromatic ring away from the Sudlow site I of HSA.


Assuntos
Clorpromazina/química , Clorpromazina/farmacocinética , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacocinética , Antipsicóticos/química , Antipsicóticos/farmacocinética , Sítios de Ligação , Carbazóis/química , Carbazóis/farmacocinética , Clorpromazina/análogos & derivados , Clorpromazina/farmacologia , Interações Medicamentosas , Humanos , Ligação de Hidrogênio , Inativação Metabólica , Metilação , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica/efeitos dos fármacos , Albumina Sérica Humana/efeitos dos fármacos , Espectrofotometria Ultravioleta , Estereoisomerismo
18.
J Org Chem ; 84(23): 15184-15191, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31675234

RESUMO

Cholesterol (Ch) is an integral part of cell membrane, where it is prone to oxidation. In humans, oxidation of Ch is commonly linked to various pathologies like Alzheimer's disease, atherosclerosis, and even cancer, which proceed via mechanisms involving enzymatic and free radical pathways. The latter begin with hydrogen abstraction (HA) from Ch by a reactive free radical. It has been established that the most efficient HA from Ch occurs at C7, although HA from C4 by peroxyl radicals has recently been observed. Conversely, HA from Ch positions other than the thermodynamically preferred C7 or C4 has never been reported. We have designed a Ch derivative where a benzophenone moiety is linked to C7 by a covalent bond. This mirrors a specific orientation of Ch within a confined environment. Product analysis and time-resolved spectroscopic studies reveal an unprecedented HA from C15, which is a thermodynamically unfavorable position. This indicates that a specific topology of reactants is crucial for the reactivity of Ch. The relative orientation of the reactants can also be relevant in biological membranes, where Ch, polyunsaturated fatty acids, and numerous oxidizing species are confined in highly restricted and anisotropic environments.


Assuntos
Colesterol/química , Hidrogênio/química , Conformação Molecular
19.
Bioorg Med Chem ; 27(24): 115162, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31703893

RESUMO

We describe the synthesis of 26 compounds, small polycerasoidol analogs, that are Lipinski's rule-of-five compliant. In order to confirm key structural features to activate PPARα and/or PPARγ, we have adopted structural modifications in the following parts: (i) the benzopyran core (hydrophobic nucleus) by benzopyran-4-one, dihydrobenzopyran or benzopyran-4-ol; (ii) the side chain at 2-position by shortening to C3, C4 and C5-carbons versus C-9-carbons of polycerasoidol; (iii) the carboxylic group (polar head) by oxygenated groups (hydroxyl, acetoxy, epoxide, ester, aldehyde) or non-oxygenated motifs (allyl and alkyl). Benzopyran-4-ones 6, 12, 13 and 17 as well as dihydrobenzopyrans 22, 24 and 25 were able to activate hPPARα, whereas benzopyran-4-one (7) with C5-carbons in the side chain exhibited hPPARγ agonism. According to our previous docking studies, SAR confirm that the hydrophobic nucleus (benzopyran-4-one or dihydrobenzopyran) is essential to activate PPARα and/or PPARγ, and the flexible linker (side alkyl chain) should containg at least C5-carbon atoms to activate PPARγ. By contrast, the polar head ("carboxylic group") tolerated several oxygenated groups but also non-oxygenated motifs. Taking into account these key structural features, small polycerasoidol analogs might provide potential active molecules useful in the treatment of dyslipidemia and/or type 2 diabetes.


Assuntos
Benzopiranos/síntese química , Benzopiranos/farmacologia , PPAR alfa/agonistas , PPAR gama/agonistas , Benzopiranos/química , Descoberta de Drogas , Estrutura Molecular , Relação Estrutura-Atividade
20.
Free Radic Biol Med ; 141: 150-158, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31195085

RESUMO

Phototoxic effects of 6,8 dihalogenated quinolones confers to this type of molecules a potential property as photochemotherapeutic agents. Two photodehalogenation processes seem to be involved in the remarkable photoinduced cellular damage. In this context, a new 6,8 dihalogenated quinolone 1 (1-methyl-6,8-difluoro-4-oxo-7-aminodimethyl-1,4-dihydroquinoline-3-carboxylic acid) was synthetized looking for improving the phototoxic properties of fluoroquinolones (FQ) and to determine the role of the photodegradation pathways in the FQ phototoxicity. With this purpose, fluorescence emissions, laser flash photolysis experiments and photodegradation studies were performed with compound 1 using 1-ethyl-6,8-difluoro-4-oxo-7-aminodimethyl-1,4-dihidroquinoline-3-carboxylic acid (2) and lomefloxacin (LFX) as reference compounds. The shortening of alkyl chain of the N(1) of the quinolone ring revealed a lifetime increase of the reactive aryl cation generated from photolysis of the three FQ and a significant reduction of the FQ photodegradation quantum yield. The fact that these differences were smaller when the same study was done using a hydrogen donor solvent (ethanol-aqueous buffer, 50/50 v/v) evidenced the highest ability of the reactive intermediate arising from 1 to produce intermolecular alkylations. These results were correlated with in vitro 3T3 NRU phototoxicity test. Thus, when Photo-Irritation-Factor (PIF) was determined for 1, 2 and LFX using cytotoxicity profiles of BALB/c 3T3 fibroblasts treated with each compound in the presence and absence of UVA light, a PIF more higher than 30 was obtained for 1 while the values for 2 and LFX were only higher than 8 and 10, respectively. Thereby, the present study illustrates an approach to modulate the photosensitizing properties of FQ with the purpose to improve the chemotherapeutic properties of antitumor quinolones. Moreover, the results obtained in this study also evidence that the key pathway responsible for the phototoxic properties associated with dihalogenated quinolones is the aryl cation generation.


Assuntos
Antineoplásicos/farmacologia , Dermatite Fototóxica , Fluoroquinolonas/farmacologia , Metano/análogos & derivados , Quinolonas/síntese química , Células 3T3 , Animais , Desenho de Fármacos , Halogênios/química , Lasers , Metano/química , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Fotoquímica , Oxigênio Singlete
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA