Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 630(8018): 950-960, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38749479

RESUMO

Immune imprinting is a phenomenon in which prior antigenic experiences influence responses to subsequent infection or vaccination1,2. The effects of immune imprinting on serum antibody responses after boosting with variant-matched SARS-CoV-2 vaccines remain uncertain. Here we characterized the serum antibody responses after mRNA vaccine boosting of mice and human clinical trial participants. In mice, a single dose of a preclinical version of mRNA-1273 vaccine encoding Wuhan-1 spike protein minimally imprinted serum responses elicited by Omicron boosters, enabling generation of type-specific antibodies. However, imprinting was observed in mice receiving an Omicron booster after two priming doses of mRNA-1273, an effect that was mitigated by a second booster dose of Omicron vaccine. In both SARS-CoV-2-infected and uninfected humans who received two Omicron-matched boosters after two or more doses of the prototype mRNA-1273 vaccine, spike-binding and neutralizing serum antibodies cross-reacted with Omicron variants as well as more distantly related sarbecoviruses. Because serum neutralizing responses against Omicron strains and other sarbecoviruses were abrogated after pre-clearing with Wuhan-1 spike protein, antibodies induced by XBB.1.5 boosting in humans focus on conserved epitopes targeted by the antecedent mRNA-1273 primary series. Thus, the antibody response to Omicron-based boosters in humans is imprinted by immunizations with historical mRNA-1273 vaccines, but this outcome may be beneficial as it drives expansion of cross-neutralizing antibodies that inhibit infection of emerging SARS-CoV-2 variants and distantly related sarbecoviruses.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Imunização Secundária , SARS-CoV-2 , Vacinas de mRNA , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Vacina de mRNA-1273 contra 2019-nCoV/administração & dosagem , Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , China , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/imunologia , Reações Cruzadas/imunologia , Epitopos de Linfócito B/imunologia , Vacinas de mRNA/administração & dosagem , Vacinas de mRNA/genética , Vacinas de mRNA/imunologia , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Vacinação
2.
bioRxiv ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38076895

RESUMO

SARS-CoV-2 continues to pose a global threat, and current vaccines, while effective against severe illness, fall short in preventing transmission. To address this challenge, there's a need for vaccines that induce mucosal immunity and can rapidly control the virus. In this study, we demonstrate that a single immunization with a novel gorilla adenovirus-based vaccine (GRAd) carrying the pre-fusion stabilized Spike protein (S-2P) in non-human primates provided protective immunity for over one year against the BA.5 variant of SARS-CoV-2. A prime-boost regimen using GRAd followed by adjuvanted S-2P (GRAd+S-2P) accelerated viral clearance in both the lower and upper airways. GRAd delivered via aerosol (GRAd(AE)+S-2P) modestly improved protection compared to its matched intramuscular regimen, but showed dramatically superior boosting by mRNA and, importantly, total virus clearance in the upper airway by day 4 post infection. GrAd vaccination regimens elicited robust and durable systemic and mucosal antibody responses to multiple SARS-CoV-2 variants, but only GRAd(AE)+S-2P generated long-lasting T cell responses in the lung. This research underscores the flexibility of the GRAd vaccine platform to provide durable immunity against SARS-CoV-2 in both the lower and upper airways.

3.
bioRxiv ; 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37986823

RESUMO

Waning immunity and continued virus evolution have limited the durability of protection from symptomatic infection mediated by intramuscularly (IM)-delivered mRNA vaccines against COVID-19 although protection from severe disease remains high. Mucosal vaccination has been proposed as a strategy to increase protection at the site of SARS-CoV-2 infection by enhancing airway immunity, potentially reducing rates of infection and transmission. Here, we compared protection against XBB.1.16 virus challenge 5 months following IM or mucosal boosting in non-human primates (NHP) that had previously received a two-dose mRNA-1273 primary vaccine regimen. The mucosal boost was composed of a bivalent chimpanzee adenoviral-vectored vaccine encoding for both SARS-CoV-2 WA1 and BA.5 spike proteins (ChAd-SARS-CoV-2-S) and delivered either by an intranasal mist or an inhaled aerosol. An additional group of animals was boosted by the IM route with bivalent WA1/BA.5 spike-matched mRNA (mRNA-1273.222) as a benchmark control. NHP were challenged in the upper and lower airways 18 weeks after boosting with XBB.1.16, a heterologous Omicron lineage strain. Cohorts boosted with ChAd-SARS-CoV-2-S by an aerosolized or intranasal route had low to undetectable virus replication as assessed by levels of subgenomic SARS-CoV-2 RNA in the lungs and nose, respectively. In contrast, animals that received the mRNA-1273.222 boost by the IM route showed minimal protection against virus replication in the upper airway but substantial reduction of virus RNA levels in the lower airway. Immune analysis showed that the mucosal vaccines elicited more durable antibody and T cell responses than the IM vaccine. Protection elicited by the aerosolized vaccine was associated with mucosal IgG and IgA responses, whereas protection elicited by intranasal delivery was mediated primarily by mucosal IgA. Thus, durable immunity and effective protection against a highly transmissible heterologous variant in both the upper and lower airways can be achieved by mucosal delivery of a virus-vectored vaccine. Our study provides a template for the development of mucosal vaccines that limit infection and transmission against respiratory pathogens.

4.
Horm Res Paediatr ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37725936

RESUMO

INTRODUCTION: Although the majority of Growth Hormone insensitivity syndrome (GHIS) cases are classical, the spectrum of clinical phenotypes has expanded to include "atypical" GHIS subjects with milder phenotypes due to very rare heterozygous growth hormone receptor (GHR) mutations with dominant negative effects. CASE PRESENTATION: A 13-year-old pubertal boy presented with short stature (-1.7 SDS) and delayed bone age (11.5 years). His serum IGF-1 was low (16 ng/ml; reference range: 179-540). IGFBP-3 (1.3 mg/L; 3.1-9.5), and ALS (565 mU/ml; 1500-3500) were also low. GH stimulation test was normal, and GHBP markedly elevated (6300pmol/L; 240-3000). Additionally, the boy had insulin resistance and liver steatosis. His final height reached -1.8 SDS, which was 3.0 SDS below his mid-parental height. GHR gene from genomic DNA and established primary fibroblast culture was analyzed and a synonymous heterozygous GHR: c.945G>A variant, in the last nucleotide of exon 9 (encoding intracellular domain of GHR) was identified. In vitro analysis of the GHR cDNA demonstrated a splicing defect, leading to the heterozygous excision of exon 9. The final predicted product was a truncated GHR protein which explained the elevated GHBP levels. CONCLUSION: We describe the first synonymous heterozygous GHR splicing variant in exon 9 encoding part of the intracellular domain of GHR identified in a patient with mild short stature, thus supporting the continuum of genotype-phenotype of GHIS.

5.
Front Vet Sci ; 10: 1182197, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483285

RESUMO

Clinical manifestations of COVID-19 vary widely, ranging from asymptomatic to severe respiratory failure with profound inflammation. Although risk factors for severe illness have been identified, definitive determinants remain elusive. Clonal hematopoiesis (CH), the expansion of hematopoietic stem and progenitor cells bearing acquired somatic mutations, is associated with advanced age and hyperinflammation. Given the similar age range and hyperinflammatory phenotype between frequent CH and severe COVID-19, CH could impact the risk of severe COVID-19. Human cohort studies have attempted to prove this relationship, but conclusions are conflicting. Rhesus macaques (RMs) are being utilized to test vaccines and therapeutics for COVID-19. However, RMs, even other species, have not yet been reported to develop late inflammatory COVID-19 disease. Here, RMs with either spontaneous DNMT3A or engineered TET2 CH along with similarly transplanted and conditioned controls were infected with SARS-CoV-2 and monitored until 12 days post-inoculation (dpi). Although no significant differences in clinical symptoms and blood counts were noted, an aged animal with natural DNMT3A CH died on 10 dpi. CH macaques showed evidence of sustained local inflammatory responses compared to controls. Interestingly, viral loads in respiratory tracts were higher at every timepoint in the CH group. Lung sections from euthanasia showed evidence of mild inflammation in all animals, while viral antigen was more frequently detected in the lung tissues of CH macaques even at the time of autopsy. Despite the lack of striking inflammation and serious illness, our findings suggest potential pathophysiological differences in RMs with or without CH upon SARS-CoV-2 infection.

6.
bioRxiv ; 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37503026

RESUMO

SARS-CoV-2 has the capacity to evolve mutations to escape vaccine-and infection-acquired immunity and antiviral drugs. A variant-agnostic therapeutic agent that protects against severe disease without putting selective pressure on the virus would thus be a valuable biomedical tool. Here, we challenged rhesus macaques with SARS-CoV-2 Delta and simultaneously treated them with aerosolized RBD-62, a protein developed through multiple rounds of in vitro evolution of SARS-CoV-2 RBD to acquire 1000-fold enhanced ACE2 binding affinity. RBD-62 treatment gave equivalent protection in upper and lower airways, a phenomenon not previously observed with clinically approved vaccines. Importantly, RBD-62 did not block the development of memory responses to Delta and did not elicit anti-drug immunity. These data provide proof-of-concept that RBD-62 can prevent severe disease from a highly virulent variant.

7.
bioRxiv ; 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36789423

RESUMO

Clinical manifestations of COVID-19 vary widely, ranging from asymptomatic to severe respiratory failure with profound inflammation. Although risk factors for severe illness have been identified, definitive determinants remain elusive. Clonal hematopoiesis (CH), the expansion of hematopoietic stem and progenitor cells bearing acquired somatic mutations, is associated with advanced age and hyperinflammation. Given the similar age range and hyperinflammatory phenotype between frequent CH and severe COVID-19, CH could impact the risk of severe COVID-19. Human cohort studies have attempted to prove this relationship, but conclusions are conflicting. Rhesus macaques (RMs) are being utilized to test vaccines and therapeutics for COVID-19. However, RMs, even other species, have not yet been reported to develop late inflammatory COVID-19 disease. Here, RMs with either spontaneous DNMT3A or engineered TET2 CH along with similarly transplanted and conditioned controls were infected with SARS-CoV-2 and monitored until 12 days post-inoculation (dpi). Although no significant differences in clinical symptoms and blood counts were noted, an aged animal with natural DNMT3A CH died on 10 dpi. CH macaques showed evidence of sustained local inflammatory responses compared to controls. Interestingly, viral loads in respiratory tracts were higher at every timepoint in the CH group. Lung sections from euthanasia showed evidence of mild inflammation in all animals, while viral antigen was more frequently detected in the lung tissues of CH macaques even at the time of autopsy. Despite the lack of striking inflammation and serious illness, our findings suggest potential pathophysiological differences in RMs with or without CH upon SARS-CoV-2 infection. Highlights: No evidence of association between CH and COVID-19 clinical severity in macaques.The presence of CH is associated with prolonged local inflammatory responses in COVID-19.SARS-CoV-2 persists longer in respiratory tracts of macaques with CH following infection.

8.
Cell ; 185(9): 1556-1571.e18, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35447072

RESUMO

SARS-CoV-2 Omicron is highly transmissible and has substantial resistance to neutralization following immunization with ancestral spike-matched vaccines. It is unclear whether boosting with Omicron-matched vaccines would enhance protection. Here, nonhuman primates that received mRNA-1273 at weeks 0 and 4 were boosted at week 41 with mRNA-1273 or mRNA-Omicron. Neutralizing titers against D614G were 4,760 and 270 reciprocal ID50 at week 6 (peak) and week 41 (preboost), respectively, and 320 and 110 for Omicron. 2 weeks after the boost, titers against D614G and Omicron increased to 5,360 and 2,980 for mRNA-1273 boost and 2,670 and 1,930 for mRNA-Omicron, respectively. Similar increases against BA.2 were observed. Following either boost, 70%-80% of spike-specific B cells were cross-reactive against WA1 and Omicron. Equivalent control of virus replication in lower airways was observed following Omicron challenge 1 month after either boost. These data show that mRNA-1273 and mRNA-Omicron elicit comparable immunity and protection shortly after the boost.


Assuntos
COVID-19 , SARS-CoV-2 , Vacina de mRNA-1273 contra 2019-nCoV , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Macaca , RNA Mensageiro
9.
Cell ; 185(1): 113-130.e15, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34921774

RESUMO

mRNA-1273 vaccine efficacy against SARS-CoV-2 Delta wanes over time; however, there are limited data on the impact of durability of immune responses on protection. Here, we immunized rhesus macaques and assessed immune responses over 1 year in blood and upper and lower airways. Serum neutralizing titers to Delta were 280 and 34 reciprocal ID50 at weeks 6 (peak) and 48 (challenge), respectively. Antibody-binding titers also decreased in bronchoalveolar lavage (BAL). Four days after Delta challenge, the virus was unculturable in BAL, and subgenomic RNA declined by ∼3-log10 compared with control animals. In nasal swabs, sgRNA was reduced by 1-log10, and the virus remained culturable. Anamnestic antibodies (590-fold increased titer) but not T cell responses were detected in BAL by day 4 post-challenge. mRNA-1273-mediated protection in the lungs is durable but delayed and potentially dependent on anamnestic antibody responses. Rapid and sustained protection in upper and lower airways may eventually require a boost.

10.
bioRxiv ; 2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34729558

RESUMO

mRNA-1273 vaccine efficacy against SARS-CoV-2 Delta wanes over time; however, there are limited data on the impact of durability of immune responses on protection. We immunized rhesus macaques at weeks 0 and 4 and assessed immune responses over one year in blood, upper and lower airways. Serum neutralizing titers to Delta were 280 and 34 reciprocal ID 50 at weeks 6 (peak) and 48 (challenge), respectively. Antibody binding titers also decreased in bronchoalveolar lavage (BAL). Four days after challenge, virus was unculturable in BAL and subgenomic RNA declined ∼3-log 10 compared to control animals. In nasal swabs, sgRNA declined 1-log 10 and virus remained culturable. Anamnestic antibody responses (590-fold increase) but not T cell responses were detected in BAL by day 4 post-challenge. mRNA-1273-mediated protection in the lungs is durable but delayed and potentially dependent on anamnestic antibody responses. Rapid and sustained protection in upper and lower airways may eventually require a boost.

11.
Science ; 374(6573): 1343-1353, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34672695

RESUMO

Neutralizing antibody responses gradually wane against several variants of concern (VOCs) after vaccination with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine messenger RNA-1273 (mRNA-1273). We evaluated the immune responses in nonhuman primates that received a primary vaccination series of mRNA-1273 and were boosted about 6 months later with either homologous mRNA-1273 or heterologous mRNA-1273.ß, which encompasses the spike sequence of the B.1.351 Beta variant. After boost, animals had increased neutralizing antibody responses across all VOCs, which was sustained for at least 8 weeks after boost. Nine weeks after boost, animals were challenged with the SARS-CoV-2 Beta variant. Viral replication was low to undetectable in bronchoalveolar lavage and significantly reduced in nasal swabs in all boosted animals, suggesting that booster vaccinations may be required to sustain immunity and protection.


Assuntos
Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Imunogenicidade da Vacina , SARS-CoV-2/imunologia , Eficácia de Vacinas , Vacina de mRNA-1273 contra 2019-nCoV/administração & dosagem , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/análise , Anticorpos Antivirais/sangue , Líquido da Lavagem Broncoalveolar/imunologia , Líquido da Lavagem Broncoalveolar/virologia , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Imunidade nas Mucosas , Imunização Secundária , Macaca mulatta , Células B de Memória/imunologia , Nariz/imunologia , Nariz/virologia , RNA Viral/análise , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/fisiologia , Células T Auxiliares Foliculares/imunologia , Células Th1/imunologia , Replicação Viral
12.
Science ; 373(6561): eabj0299, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34529476

RESUMO

Immune correlates of protection can be used as surrogate endpoints for vaccine efficacy. Here, nonhuman primates (NHPs) received either no vaccine or doses ranging from 0.3 to 100 µg of the mRNA-1273 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine. mRNA-1273 vaccination elicited circulating and mucosal antibody responses in a dose-dependent manner. Viral replication was significantly reduced in bronchoalveolar lavages and nasal swabs after SARS-CoV-2 challenge in vaccinated animals and most strongly correlated with levels of anti­S antibody and neutralizing activity. Lower antibody levels were needed for reduction of viral replication in the lower airway than in the upper airway. Passive transfer of mRNA-1273­induced immunoglobulin G to naïve hamsters was sufficient to mediate protection. Thus, mRNA-1273 vaccine­induced humoral immune responses are a mechanistic correlate of protection against SARS-CoV-2 in NHPs.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Imunogenicidade da Vacina , SARS-CoV-2/imunologia , Vacina de mRNA-1273 contra 2019-nCoV , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Afinidade de Anticorpos , Líquido da Lavagem Broncoalveolar/imunologia , Líquido da Lavagem Broncoalveolar/virologia , Linfócitos T CD4-Positivos/imunologia , COVID-19/imunologia , COVID-19/virologia , Feminino , Esquemas de Imunização , Imunização Passiva , Imunização Secundária , Imunoglobulina G/imunologia , Memória Imunológica , Pulmão/imunologia , Pulmão/virologia , Macaca mulatta , Masculino , Mesocricetus , Mucosa Nasal/imunologia , Mucosa Nasal/virologia , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação , Potência de Vacina , Replicação Viral
13.
Nat Immunol ; 22(10): 1306-1315, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34417590

RESUMO

B.1.351 is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant most resistant to antibody neutralization. We demonstrate how the dose and number of immunizations influence protection. Nonhuman primates received two doses of 30 or 100 µg of Moderna's mRNA-1273 vaccine, a single immunization of 30 µg, or no vaccine. Two doses of 100 µg of mRNA-1273 induced 50% inhibitory reciprocal serum dilution neutralizing antibody titers against live SARS-CoV-2 p.Asp614Gly and B.1.351 of 3,300 and 240, respectively. Higher neutralizing responses against B.1.617.2 were also observed after two doses compared to a single dose. After challenge with B.1.351, there was ~4- to 5-log10 reduction of viral subgenomic RNA and low to undetectable replication in bronchoalveolar lavages in the two-dose vaccine groups, with a 1-log10 reduction in nasal swabs in the 100-µg group. These data establish that a two-dose regimen of mRNA-1273 will be critical for providing upper and lower airway protection against major variants of concern.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Primatas/imunologia , SARS-CoV-2/imunologia , Vacina de mRNA-1273 contra 2019-nCoV , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/virologia , Linhagem Celular , Chlorocebus aethiops , Feminino , Humanos , Macaca mulatta , Masculino , Mesocricetus , Primatas/virologia , RNA Viral/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação/métodos , Células Vero , Carga Viral/métodos
14.
bioRxiv ; 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34426813

RESUMO

Neutralizing antibody responses gradually wane after vaccination with mRNA-1273 against several variants of concern (VOC), and additional boost vaccinations may be required to sustain immunity and protection. Here, we evaluated the immune responses in nonhuman primates that received 100 µg of mRNA-1273 vaccine at 0 and 4 weeks and were boosted at week 29 with mRNA-1273 (homologous) or mRNA-1273.ß (heterologous), which encompasses the spike sequence of the B.1.351 (beta or ß) variant. Reciprocal ID 50 pseudovirus neutralizing antibody geometric mean titers (GMT) against live SARS-CoV-2 D614G and the ß variant, were 4700 and 765, respectively, at week 6, the peak of primary response, and 644 and 553, respectively, at a 5-month post-vaccination memory time point. Two weeks following homologous or heterologous boost ß-specific reciprocal ID 50 GMT were 5000 and 3000, respectively. At week 38, animals were challenged in the upper and lower airway with the ß variant. Two days post-challenge, viral replication was low to undetectable in both BAL and nasal swabs in most of the boosted animals. These data show that boosting with the homologous mRNA-1273 vaccine six months after primary immunization provides up to a 20-fold increase in neutralizing antibody responses across all VOC, which may be required to sustain high-level protection against severe disease, especially for at-risk populations. ONE-SENTENCE SUMMARY: mRNA-1273 boosted nonhuman primates have increased immune responses and are protected against SARS-CoV-2 beta infection.

15.
Dev Cell ; 56(20): 2871-2885.e6, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34428430

RESUMO

The mechanism of vulnerability to pediatric low-grade gliomas (pLGGs)-the most common brain tumor in children-during development remains largely unknown. Using mouse models of neurofibromatosis type 1 (NF1)-associated pLGGs in the optic pathway (NF1-OPG), we demonstrate that NF1-OPG arose from the vulnerability to the dependency of Mek-Erk/MAPK signaling during gliogenesis of one of the two developmentally transient precursor populations in the optic nerve, brain-derived migrating glial progenitors (GPs), but not local progenitors. Hyperactive Erk/MAPK signaling by Nf1 loss overproduced GPs by disrupting the balance between stem-cell maintenance and gliogenesis of hypothalamic ventricular zone radial glia (RG). Persistence of RG-like GPs initiated NF1-OPG, causing Bax-dependent apoptosis in retinal ganglion cells. Removal of three Mek1/Mek2 alleles or transient post-natal treatment with a low-dose MEK inhibitor normalized differentiation of Nf1-/- RG-like GPs, preventing NF1-OPG formation and neuronal degeneration. We provide the proof-of-concept evidence for preventing pLGGs before tumor-associated neurological damage enters an irreversible phase.


Assuntos
Sistema de Sinalização das MAP Quinases/fisiologia , Neurofibromatose 1/terapia , Glioma do Nervo Óptico/terapia , Células-Tronco/citologia , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Modelos Animais de Doenças , Olho/metabolismo , Camundongos , Neurofibromatose 1/metabolismo , Neurofibromatose 1/patologia , Neuroglia/metabolismo , Nervo Óptico/patologia , Glioma do Nervo Óptico/metabolismo , Glioma do Nervo Óptico/patologia
16.
Sci Transl Med ; 13(607)2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34315825

RESUMO

Adjuvanted soluble protein vaccines have been used extensively in humans for protection against various viral infections based on their robust induction of antibody responses. Here, soluble prefusion-stabilized spike protein trimers (preS dTM) from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were formulated with the adjuvant AS03 and administered twice to nonhuman primates (NHPs). Binding and functional neutralization assays and systems serology revealed that the vaccinated NHP developed AS03-dependent multifunctional humoral responses that targeted distinct domains of the spike protein and bound to a variety of Fc receptors mediating immune cell effector functions in vitro. The neutralizing 50% inhibitory concentration titers for pseudovirus and live SARS-CoV-2 were higher than titers for a panel of human convalescent serum samples. NHPs were challenged intranasally and intratracheally with a high dose (3 × 106 plaque forming units) of SARS-CoV-2 (USA-WA1/2020 isolate). Two days after challenge, vaccinated NHPs showed rapid control of viral replication in both the upper and lower airways. Vaccinated NHPs also had increased spike protein-specific immunoglobulin G (IgG) antibody responses in the lung as early as 2 days after challenge. Moreover, passive transfer of vaccine-induced IgG to hamsters mediated protection from subsequent SARS-CoV-2 challenge. These data show that antibodies induced by the AS03-adjuvanted preS dTM vaccine were sufficient to mediate protection against SARS-CoV-2 in NHPs and that rapid anamnestic antibody responses in the lung may be a key mechanism for protection.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/terapia , Cricetinae , Imunização Passiva , Pulmão , Primatas , SARS-CoV-2 , Vacinação , Soroterapia para COVID-19
17.
bioRxiv ; 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34075375

RESUMO

BACKGROUND: Vaccine efficacy against the B.1.351 variant following mRNA-1273 vaccination in humans has not been determined. Nonhuman primates (NHP) are a useful model for demonstrating whether mRNA-1273 mediates protection against B.1.351. METHODS: Nonhuman primates received 30 or 100 µg of mRNA-1273 as a prime-boost vaccine at 0 and 4 weeks, a single immunization of 30 µg at week 0, or no vaccine. Antibody and T cell responses were assessed in blood, bronchioalveolar lavages (BAL), and nasal washes. Viral replication in BAL and nasal swabs were determined by qRT-PCR for sgRNA, and histopathology and viral antigen quantification were performed on lung tissue post-challenge. RESULTS: Eight weeks post-boost, 100 µg x2 of mRNA-1273 induced reciprocal ID 50 neutralizing geometric mean titers against live SARS-CoV-2 D614G and B.1.351 of 3300 and 240, respectively, and 430 and 84 for the 30 µg x2 group. There were no detectable neutralizing antibodies against B.1351 after the single immunization of 30 µg. On day 2 following B.1.351 challenge, sgRNA in BAL was undetectable in 6 of 8 NHP that received 100 µg x2 of mRNA-1273, and there was a ∼2-log reduction in sgRNA in NHP that received two doses of 30 µg compared to controls. In nasal swabs, there was a 1-log 10 reduction observed in the 100 µg x2 group. There was limited inflammation or viral antigen in lungs of vaccinated NHP post-challenge. CONCLUSIONS: Immunization with two doses of mRNA-1273 achieves effective immunity that rapidly controls lower and upper airway viral replication against the B.1.351 variant in NHP.

18.
bioRxiv ; 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33907752

RESUMO

Immune correlates of protection can be used as surrogate endpoints for vaccine efficacy. The nonhuman primate (NHP) model of SARS-CoV-2 infection replicates key features of human infection and may be used to define immune correlates of protection following vaccination. Here, NHP received either no vaccine or doses ranging from 0.3 - 100 µg of mRNA-1273, a mRNA vaccine encoding the prefusion-stabilized SARS-CoV-2 spike (S-2P) protein encapsulated in a lipid nanoparticle. mRNA-1273 vaccination elicited robust circulating and mucosal antibody responses in a dose-dependent manner. Viral replication was significantly reduced in bronchoalveolar lavages and nasal swabs following SARS-CoV-2 challenge in vaccinated animals and was most strongly correlated with levels of anti-S antibody binding and neutralizing activity. Consistent with antibodies being a correlate of protection, passive transfer of vaccine-induced IgG to naïve hamsters was sufficient to mediate protection. Taken together, these data show that mRNA-1273 vaccine-induced humoral immune responses are a mechanistic correlate of protection against SARS-CoV-2 infection in NHP. ONE-SENTENCE SUMMARY: mRNA-1273 vaccine-induced antibody responses are a mechanistic correlate of protection against SARS-CoV-2 infection in NHP.

19.
bioRxiv ; 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33688652

RESUMO

Adjuvanted soluble protein vaccines have been used extensively in humans for protection against various viral infections based on their robust induction of antibody responses. Here, soluble prefusion-stabilized spike trimers (preS dTM) from the severe acute respiratory syndrome coronavirus (SARS-CoV-2) were formulated with the adjuvant AS03 and administered twice to nonhuman primates (NHP). Binding and functional neutralization assays and systems serology revealed that NHP developed AS03-dependent multi-functional humoral responses that targeted multiple spike domains and bound to a variety of antibody FC receptors mediating effector functions in vitro. Pseudovirus and live virus neutralizing IC50 titers were on average greater than 1000 and significantly higher than a panel of human convalescent sera. NHP were challenged intranasally and intratracheally with a high dose (3×106 PFU) of SARS-CoV-2 (USA-WA1/2020 isolate). Two days post-challenge, vaccinated NHP showed rapid control of viral replication in both the upper and lower airways. Notably, vaccinated NHP also had increased spike-specific IgG antibody responses in the lung as early as 2 days post challenge. Moreover, vaccine-induced IgG mediated protection from SARS-CoV-2 challenge following passive transfer to hamsters. These data show that antibodies induced by the AS03-adjuvanted preS dTM vaccine are sufficient to mediate protection against SARS-CoV-2 and support the evaluation of this vaccine in human clinical trials.

20.
Nat Commun ; 9(1): 2105, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29844444

RESUMO

Growth hormone (GH) insensitivity syndrome (GHIS) is a rare clinical condition in which production of insulin-like growth factor 1 is blunted and, consequently, postnatal growth impaired. Autosomal-recessive mutations in signal transducer and activator of transcription (STAT5B), the key signal transducer for GH, cause severe GHIS with additional characteristics of immune and, often fatal, pulmonary complications. Here we report dominant-negative, inactivating STAT5B germline mutations in patients with growth failure, eczema, and elevated IgE but without severe immune and pulmonary problems. These STAT5B missense mutants are robustly tyrosine phosphorylated upon stimulation, but are unable to nuclear localize, or fail to bind canonical STAT5B DNA response elements. Importantly, each variant retains the ability to dimerize with wild-type STAT5B, disrupting the normal transcriptional functions of wild-type STAT5B. We conclude that these STAT5B variants exert dominant-negative effects through distinct pathomechanisms, manifesting in milder clinical GHIS with general sparing of the immune system.


Assuntos
Predisposição Genética para Doença/genética , Mutação em Linhagem Germinativa/genética , Hormônio do Crescimento Humano/metabolismo , Síndrome de Laron/genética , Fator de Transcrição STAT5/genética , Adolescente , Linhagem Celular , Criança , Eczema/genética , Feminino , Células HEK293 , Humanos , Imunoglobulina E/sangue , Lactente , Fator de Crescimento Insulin-Like I/biossíntese , Masculino , Mutação de Sentido Incorreto/genética , Elementos de Resposta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA