Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Dev Biol ; 10(3)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35997396

RESUMO

The Notch pathway is an important and evolutionarily conserved signaling system involved in the development of multicellular organisms. Notch signaling plays an important role in the regulation of proliferation and differentiation of many cell types. In this study, we report new aspects of Notch gene participation in oogenesis using our previously generated mutations. The mutations consist of an insertion of an auxiliary element of a transgene construct into the first intron of the gene and a series of directed deletions within the 5' regulatory region of Notch. We showed that some of these mutations affect Drosophila oogenesis. This insertion, either alone or in combination with the deletion of an insulator sequence, led to lower expression of Notch in the ovaries. As a result, the formation of egg chambers was disturbed in middle oogenesis. These abnormalities have not been described previously and imply one more function of Notch in oogenesis. It can be assumed that Notch is associated with not only follicular epithelium morphogenesis but also cellular mechanisms of oocyte growth.

2.
Methods Mol Biol ; 2472: 1-14, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35674887

RESUMO

The Notch gene is a key factor in the signaling cascade that allows communication between neighboring cells in many organisms, from worms and insects to humans. The relative simplicity of the Notch pathway in Drosophila, combined with a powerful set of molecular and cytogenetic methods, makes this model attractive for studying the fundamental principles of Notch regulation and functioning. Here, using the CRISPR/Cas9 system in combination with homologous recombination, for the first time at the level of the whole organism, we obtained a directed deletion of the 5'-regulatory region and the first exon of the Notch gene, which were replaced by the attP integration site of the ΦC31 phage. Based on this approach, we obtained and characterized new Notch mutations. Thus, a new powerful tool is provided for studying the genetic regulation of the Notch gene and the organization of chromatin at this locus.


Assuntos
Bacteriófagos , Proteínas de Drosophila , Animais , Bacteriófagos/genética , Sistemas CRISPR-Cas , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo
3.
Genes (Basel) ; 10(12)2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842424

RESUMO

Notch is a key factor of a signaling cascade which regulates cell differentiation in all multicellular organisms. Numerous investigations have been directed mainly at studying the mechanism of Notch protein action; however, very little is known about the regulation of activity of the gene itself. Here, we provide the results of targeted 5'-end editing of the Drosophila Notch gene in its native environment and genetic and cytological effects of these changes. Using the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated protein 9 (CRISPR/Cas9) system in combination with homologous recombination, we obtained a founder fly stock in which a 4-kb fragment, including the 5' nontranscribed region, the first exon, and a part of the first intron of Notch, was replaced by an attachment Phage (attP) site. Then, fly lines carrying a set of six deletions within the 5'untranscribed region of the gene were obtained by ΦC31-mediated integration of transgenic constructs. Part of these deletions does not affect gene activity, but their combinations with transgenic construct in the first intron of the gene cause defects in the Notch target tissues. At the polytene chromosome level we defined a DNA segment (~250 bp) in the Notch5'-nontranscribed region which when deleted leads to disappearance of the 3C6/C7 interband and elimination of CTC-Factor (CTCF) and Chromator (CHRIZ) insulator proteins in this region.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Regiões 5' não Traduzidas/genética , Animais , Sistemas CRISPR-Cas , Estruturas Cromossômicas/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica/genética , Recombinação Homóloga/genética , Cromossomos Politênicos/genética , Relação Estrutura-Atividade
4.
Chromosoma ; 124(2): 209-20, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25398563

RESUMO

We analyze how artificial targeting of Suppressor of Under-Replication (SUUR) and HP1 proteins affects DNA replication in the "open," euchromatic regions. Normally these regions replicate early in the S phase and display no binding of either SUUR or HP1. These proteins were expressed as fusions with DNA-binding domain of GAL4 and recruited to multimerized UAS integrated in three euchromatic sites of the polytene X chromosome: 3B, 8D, and 18B. Using PCNA staining as a marker of ongoing replication, we showed that targeting of SUUR(GAL4DBD) and HP1(GAL4DBD) results in delayed replication of appropriate euchromatic regions. Specifically, replication at these regions starts early, much like in the absence of the fusion proteins; however, replication completion is significantly delayed. Notably, delayed replication was insufficient to induce underreplication. Recruitment of SUUR(GAL4DBD) and HP1(GAL4DBD) had distinct effects on expression of a mini-white reporter, found near UAS. Whereas SUUR(GAL4DBD) had no measurable influence on mini-white expression, HP1(GAL4DBD) targeting silenced mini-white, even in the absence of functional SU(VAR)3-9. Furthermore, recruitment of SUUR(GAL4DBD) and HP1(GAL4DBD) had distinct effects on the protein composition of target regions. HP1(GAL4DBD) but not SUUR(GAL4DBD) could displace an open chromatin marker, CHRIZ, from the tethering sites.


Assuntos
Proteínas Cromossômicas não Histona/genética , Replicação do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Cromossomos Politênicos/genética , Animais , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Feminino , Marcadores Genéticos , Genômica , Masculino , Metiltransferases/metabolismo , Cromossomos Politênicos/metabolismo , Reprodutibilidade dos Testes , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA