Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Protist ; 174(5): 125983, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37573812

RESUMO

Based on scanning electron microscopy observations, a new species of the coccolithophore genus Calciopappus (Syracosphaeraceae, Prymnesiophyceae) is described from the surface waters off Bergen and from the lower photic zone of sub-tropical and tropical waters. Morphological, coccolith rim structure and biometric analyses strongly support separation of this morphotype from the two described Calciopappus species, but inclusion of it within the genus. The new form differs from the other species in being noticeably smaller and in morpho-structural details of each of the three coccolith types that form the coccosphere: (1) the body coccoliths have an open central area; (2) the whorl coccoliths have a wide central opening and two thumb-like protrusions; and (3) the appendage coccoliths are curved. On this basis, the species is formally described as Calciopappus curvus sp. nov., its systematic affinity is discussed and compared with other extant coccolithophores.


Assuntos
Haptófitas , Microscopia Eletrônica de Varredura
2.
J Phycol ; 45(1): 213-26, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27033659

RESUMO

The morphology of three remarkable genera of coccolithophores, Ophiaster, Michaelsarsia, and Calciopappus, is reviewed based on new images using field emission scanning electron microscopy. Each of these genera characteristically forms coccospheres with long appendages formed of highly modified coccoliths, which radiate from either the circum-flagellar pole of the coccosphere (Calciopappus and Michaelsarsia) or the antapical pole (Ophiaster). For each genus, it is shown that the appendage coccoliths can also occur in an alternative orientation appressed to the main coccosphere. It is hypothesized that the appendage coccoliths are initially deployed in the appressed orientation and that extension of the appendages is a dynamic response to environmental stress. The observations suggest that coccoliths are more sophisticatedly adapted to specific functions than has been assumed and that the cytoskeleton plays more active roles in coccolith morphogenesis and deployment than has previously been inferred.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA