RESUMO
Background: Circadian rhythms time physiological and behavioral processes to 24-hour cycles. It is generally assumed that most cells contain self-sustained circadian clocks that drive circadian rhythms in gene expression that ultimately generating circadian rhythms in physiology. While those clocks supposedly act cell autonomously, current work suggests that in Drosophila some of them can be adjusted by the brain circadian pacemaker through neuropeptides, like the Pigment Dispersing Factor (PDF). Despite these findings and the ample knowledge of the molecular clockwork, it is still unknown how circadian gene expression in Drosophila is achieved across the body. Results: Here, we used single-cell and bulk RNAseq data to identify cells within the fly that express core-clock components. Surprisingly, we found that less than a third of the cell types in the fly express core-clock genes. Moreover, we identified Lamina wild field (Lawf) and Ponx-neuro positive (Poxn) neurons as putative new circadian neurons. In addition, we found several cell types that do not express core clock components but are highly enriched for cyclically expressed mRNAs. Strikingly, these cell types express the PDF receptor (Pdfr), suggesting that PDF drives rhythmic gene expression in many cell types in flies. Other cell types express both core circadian clock components and Pdfr, suggesting that in these cells, PDF regulates the phase of rhythmic gene expression. Conclusions: Together, our data suggest three different mechanisms generate cyclic daily gene expression in cells and tissues: canonical endogenous canonical molecular clock, PDF signaling-driven expression, or a combination of both.
RESUMO
Natural genetic variation affects circadian rhythms across the evolutionary tree, but the underlying molecular mechanisms are poorly understood. We investigated population-level, molecular circadian clock variation by generating >700 tissue-specific transcriptomes of Drosophila melanogaster (w1118 ) and 141 Drosophila Genetic Reference Panel (DGRP) lines. This comprehensive circadian gene expression atlas contains >1700 cycling genes including previously unknown central circadian clock components and tissue-specific regulators. Furthermore, >30% of DGRP lines exhibited aberrant circadian gene expression, revealing abundant genetic variation-mediated, intertissue circadian expression desynchrony. Genetic analysis of one line with the strongest deviating circadian expression uncovered a novel cry mutation that, as shown by protein structural modeling and brain immunohistochemistry, disrupts the light-driven flavin adenine dinucleotide cofactor photoreduction, providing in vivo support for the importance of this conserved photoentrainment mechanism. Together, our study revealed pervasive tissue-specific circadian expression variation with genetic variants acting upon tissue-specific regulatory networks to generate local gene expression oscillations.
Assuntos
Relógios Circadianos , Proteínas de Drosophila , Animais , Relógios Circadianos/genética , Ritmo Circadiano/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismoRESUMO
With the approach of winter, many insects switch to an alternative protective developmental program called diapause. Drosophila melanogaster females overwinter as adults by inducing a reproductive arrest that is characterized by inhibition of ovarian development at previtellogenic stages. The insulin producing cells (IPCs) are key regulators of this process, since they produce and release insulin-like peptides that act as diapause-antagonizing hormones. Here we show that in D. melanogaster two neuropeptides, Pigment Dispersing Factor (PDF) and short Neuropeptide F (sNPF) inhibit reproductive arrest, likely through modulation of the IPCs. In particular, genetic manipulations of the PDF-expressing neurons, which include the sNPF-producing small ventral Lateral Neurons (s-LNvs), modulated the levels of reproductive dormancy, suggesting the involvement of both neuropeptides. We expressed a genetically encoded cAMP sensor in the IPCs and challenged brain explants with synthetic PDF and sNPF. Bath applications of both neuropeptides increased cAMP levels in the IPCs, even more so when they were applied together, suggesting a synergistic effect. Bath application of sNPF additionally increased Ca2+ levels in the IPCs. Our results indicate that PDF and sNPF inhibit reproductive dormancy by maintaining the IPCs in an active state.
Assuntos
Proteínas CLOCK/genética , Proteínas de Drosophila/genética , Neuropeptídeos/genética , Reprodução/genética , Animais , Animais Geneticamente Modificados/genética , Encéfalo/metabolismo , Ritmo Circadiano/genética , Diapausa/genética , Diapausa/fisiologia , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica/genética , Insulina/genética , Neurônios/metabolismo , Transdução de Sinais/genéticaRESUMO
Unlike many insects where photoperiod per se induces diapause, reproductive arrest in Drosophila melanogaster adult females is observed at colder temperatures and can be enhanced by shorter photoperiods. Traditional experimental protocols raise flies at 25⯰C from the larval stage and then the adults are placed at 12⯰C for between 12 and 28â¯days. After 12â¯days diapause levels are usually higher than at 28â¯days, suggesting that the flies are in a cold induced quiescence, rather than a true diapause. By raising flies at more realistic lower temperatures, we observe quite dramatic and counter-intuitive effects on diapause, whose levels nevertheless correlate with various indices of cryoprotectant metabolites as well as resistance to chill shock. We also observe that photoperiodic effects are minimised when very small temperature oscillations associated with the light-dark incubator cycles are neutralised. Our results suggest that the reported photoperiodic component of fly diapause, at least in these strains, is mostly due to thermoperiodic rather than photoperiodic stimuli. In addition, the metabolite and chill shock analyses reveal that even by 12â¯days, flies are entering a state that is resistant to environmental stresses.
Assuntos
Aclimatação , Temperatura Baixa , Diapausa de Inseto/fisiologia , Drosophila melanogaster/fisiologia , Fotoperíodo , Animais , Feminino , Glucose/metabolismo , Masculino , Trealose/metabolismoRESUMO
Alpha-synuclein (αS) misfolding is associated with Parkinson's disease (PD) but little is known about the mechanisms underlying αS toxicity. Increasing evidence suggests that defects in membrane transport play an important role in neuronal dysfunction. Here we demonstrate that the GTPase Rab8a interacts with αS in rodent brain. NMR spectroscopy reveals that the C-terminus of αS binds to the functionally important switch region as well as the C-terminal tail of Rab8a. In line with a direct Rab8a/αS interaction, Rab8a enhanced αS aggregation and reduced αS-induced cellular toxicity. In addition, Rab8 - the Drosophila ortholog of Rab8a - ameliorated αS-oligomer specific locomotor impairment and neuron loss in fruit flies. In support of the pathogenic relevance of the αS-Rab8a interaction, phosphorylation of αS at S129 enhanced binding to Rab8a, increased formation of insoluble αS aggregates and reduced cellular toxicity. Our study provides novel mechanistic insights into the interplay of the GTPase Rab8a and αS cytotoxicity, and underscores the therapeutic potential of targeting this interaction.