Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chromatogr B Biomed Sci Appl ; 752(2): 233-45, 2001 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-11270864

RESUMO

Seven forms of a therapeutic recombinant antibody that binds to the her2/neu gene product were resolved by cation-exchange chromatography. Structural differences were assigned by peptide mapping and HIC after papain digestion. Deamidation of light chain asparagine 30 to aspartate in one or both light chains is responsible for two acidic forms. A low potency form is due to isomerization of heavy chain aspartate 102; the Asp102 succinimide is also present in a basic peak fraction. Forms with both Asn30 deamidation and Asp102 isomerization modifications were isolated. Deamidation of heavy chain Asn55 to isoaspartate was also detected. Isoelectric focusing in a polyacrylamide gel was used to verify the assignments. All modifications were found in complementarity determining regions.


Assuntos
Anticorpos/química , Receptor ErbB-2/imunologia , Sequência de Aminoácidos , Anticorpos/imunologia , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Focalização Isoelétrica , Dados de Sequência Molecular , Mapeamento de Peptídeos , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Tripsina/química
2.
Pharm Res ; 16(3): 350-8, 1999 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10213364

RESUMO

PURPOSE: To study the effect of trehalose, lactose, and mannitol on the biochemical stability and aerosol performance of spray-dried powders of an anti-IgE humanized monoclonal antibody. METHODS: Protein aggregation of spray-dried powders stored at various temperature and relative humidity conditions was assayed by size exclusion chromatography and sodium dodecyl sulfate polyacrylamide gel electrophoresis. Protein glycation was determined by isoelectric focusing and affinity chromatography. Crystallization was examined by X-ray powder diffraction. Aerosol performance was assessed as the fine particle fraction (FPF) of the powders blended with coarse carrier lactose, and was determined using a multiple stage liquid impinger. RESULTS: Soluble protein aggregation consisting of non-covalent and disulfide-linked covalent dimers and trimers occurred during storage. Aggregate was minimized by formulation with trehalose at or above a molar ratio in the range of 300: 1 to 500:1 (excipient:protein). However, the powders were excessively cohesive and unsuitable for aerosol administration. Lactose had a similar stabilizing effect, and the powders exhibited acceptable aerosol performance, but protein glycation was observed during storage. The addition of mannitol also reduced aggregation, while maintaining the FPF, but only up to a molar ratio of 200:1. Further increased mannitol resulted in crystallization, which had a detrimental effect on protein stability and aerosol performance. CONCLUSIONS: Protein stability was improved by formulation with carbohydrate. However, a balance must be achieved between the addition of enough stabilizer to improve protein biochemical stability without compromising blended powder aerosol performance.


Assuntos
Aerossóis/química , Anticorpos Monoclonais/química , Excipientes/química , Carboidratos/química , Química Farmacêutica , Estabilidade de Medicamentos , Humanos , Imunoglobulina E/química , Imunoglobulina E/imunologia , Cinética , Lactose/química , Tamanho da Partícula , Pós/química
3.
J Pharm Sci ; 87(11): 1406-11, 1998 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9811498

RESUMO

We have examined the stability and aerosol performance of the pharmaceutical protein recombinant humanized anti-IgE monoclonal antibody (rhuMAbE25) spray dried with mannitol. The aerosol performance was measured by the fine particle fraction (FPF), and stability was assessed by the formation of soluble aggregates. When mannitol was added to the spray-dried rhuMAbE25 formulation, its ability to stabilize the protein leveled off above about 20% (w/w, dry basis). The FPF of the spray-dried formulations was stable during storage for rhuMAbE25 containing 10% and 20% mannitol, but the 30% formulation exhibited a dramatic decrease upon storage at both 5 degreesC and 30 degreesC, due to mannitol crystallization. We tested the addition of sodium phosphate to a 60:40 rhuMAbE25:mannitol (w:w) mixture, which otherwise crystallized upon spray drying and yielded a nonrespirable powder. The presence of sodium phosphate was successful in inhibiting mannitol crystallization upon spray drying and dramatically lowering the rate of solid-state aggregation. However, over long-term storage some crystallization was observed even for the phosphate-containing samples, concomitantly with increased particle size and decreased suitability for aerosol delivery. Therefore, the physical state of mannitol (i.e., amorphous or crystalline) plays a role both in maintaining protein stability and providing suitable aerosol performance when used as an excipient for spray-dried powders. Agents which retard mannitol crystallization, e.g., sodium phosphate, may be useful in extending the utility of mannitol as an excipient in spray-dried protein formulations.


Assuntos
Anticorpos Anti-Idiotípicos/química , Excipientes/química , Manitol/química , Proteínas/química , Estabilidade de Medicamentos , Humanos
4.
Pharm Res ; 15(5): 768-75, 1998 May.
Artigo em Inglês | MEDLINE | ID: mdl-9619788

RESUMO

PURPOSE: To understand the effect of spray drying and powder processing environments on the residual moisture content and aerosol performance of inhalation protein powders. Also, the long-term effect of storage conditions on the powder's physical and biochemical stability was presented. METHODS: Excipient-free as well as mannitol-formulated powders of a humanized monoclonal antibody (anti-IgE) and recombinant human deoxyribonuclease (rhDNase) were prepared using a Buchi 190 model spray dryer. Residual moisture content and moisture uptake behavior of the powder were measured using thermal gravimetric analysis and gravimetric moisture sorption isotherm, respectively. Protein aggregation, the primary degradation product observed upon storage, was determined by size-exclusion HPLC. Aerosol performance of the dry powders was evaluated after blending with lactose carriers using a multi-stage liquid impinger (MSLI). RESULTS: Spray-dried powders with a moisture level (approximately 3%) equivalent to the freeze-dried materials could only be achieved using high-temperature spray-drying conditions, which were not favorable to large-male manufacturing, or subsequent vacuum drying. These dry powders would equilibrate with the subsequent processing and storage environments regardless of the manufacturing condition. As long as the relative humidity of air during processing and storage was lower than 50%, powders maintained their aerosol performance (fine particle fraction). However, powders stored under drier conditions exhibited better long-term protein biochemical stability. CONCLUSIONS: Manufacturing, powder processing, and storage environments affected powder's residual moisture level in a reversible fashion. Therefore, the storage condition determined powder's overall stability, but residual moisture had a greater impact on protein chemical stability than on powder physical stability.


Assuntos
Aerossóis/química , Anticorpos Monoclonais/química , Desoxirribonucleases/química , Pós/química , Administração por Inalação , Cromatografia Líquida de Alta Pressão , Estabilidade de Medicamentos , Umidade , Tamanho da Partícula , Vácuo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA