Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Clin Nutr ESPEN ; 54: 166-174, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36963859

RESUMO

Intermittent Fasting (IF) is the consumption of food and drinks within a defined time, while the ketogenic diet (KD) switches the metabolism from glucose to fats. Continuation of intermittent fasting leads to the generation of ketones, the exact mechanism for a ketogenic diet. This article discusses the types of IF and KD, the monitoring required, and the mechanisms underlying IF and KD, followed by disorders in which the combination strategy could be applied. The strategies for successfully applying combination therapy are included, along with recommendations for the primary care physicians (PCP) which could serve as a handy guide for patient management. This opinion article could serve as the baseline for future clinical studies since there is an utmost need for developing new wholesome strategies for managing chronic disorders.


Assuntos
Dieta Cetogênica , Humanos , Jejum Intermitente , Jejum , Cetonas/metabolismo , Glicemia/metabolismo
2.
bioRxiv ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38168417

RESUMO

The HIV-1 capsid protein (CA) assumes distinct assembly forms during replication, each presenting unique, solvent-accessible surfaces that facilitate multifaceted functions and host factor interactions. However, contributions of individual CA assemblies remain unclear, as the evaluation of CA in cells presents several technical challenges. To address this need, we sought to identify CA assembly form-specific aptamers. Aptamer subsets with different specificities emerged from within a highly converged, pre-enriched aptamer library previously selected to bind the CA hexamer lattice. Subsets were either highly specific for CA lattice or bound both CA lattice and CA hexamer. We further evaluated four representatives to reveal aptamer structural features required for binding, highlighting interesting features and challenges in aptamer structure determination. Importantly, our aptamers bind biologically relevant forms of CA and we demonstrate aptamer-mediated affinity purification of CA from cell lysates without virus or host modification. Thus, we have identified CA assembly form-specific aptamers that represent exciting new tools for the study of CA.

3.
Clin Nutr ESPEN ; 47: 339-345, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35063224

RESUMO

BACKGROUND: Traumatic Brain injury (TBI) is a major cause of mortality and morbidity in the United States. Ketogenic diet (KD) has been shown to have neuroprotective effects in acute brain injury, but limited data about its use in adult TBI patients is available. The objective of this study is to investigate the feasibility and safety of ketogenic diet (KD) for adult TBI patients in the Neuroscience Intensive Care Unit (NSICU). METHODS: TBI patients admitted to NSICU between June 2019 to March 2021 were enrolled in this single-center, open label, single-arm prospective intervention study. The primary feasibility outcome was achievement of ketosis (detection and maintenance of serum beta-hydroxybutyrate (BOB) levels above normal); secondary outcomes included laboratory and clinical adverse effects related to KD. RESULTS: 10 adults with TBI with Abbreviated Injury Score (AIS)-Head ≥3 and ventriculostomy catheter to monitor intracranial pressure met inclusion/exclusion criteria and were placed on KD. Mean age was 47 years, and all patients were male. Eight out of 10 patients achieved ketosis within mean 2.2 days. KD was initiated within 8-33 h (average 23 h) of hospital admission. No clinical adverse effects were noted, 2 patients developed hypertriglyceridemia and 1 patient developed hypoglycemia. Serum glucose showed a decreasing trend in most patients. CONCLUSIONS: This pilot study shows that KD is feasible in the management of TBI patients. A randomized controlled trial (RCT) is justified to further understand the optimal serum BOB levels, dose and duration of KD in TBI and its effect on the outcome. CLINICALTRIALS. GOV IDENTIFIER: NCT03982602, Registered 06/11/2019, https://clinicaltrials.gov/ct2/show/NCT03982602?term=brain+injury&cond=ketogenic+diet&draw=2&rank=3.


Assuntos
Lesões Encefálicas Traumáticas , Dieta Cetogênica , Adulto , Dieta Cetogênica/efeitos adversos , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Estados Unidos
4.
Nucleic Acids Res ; 50(3): 1701-1717, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35018437

RESUMO

The HIV-1 capsid core participates in several replication processes. The mature capsid core is a lattice composed of capsid (CA) monomers thought to assemble first into CA dimers, then into ∼250 CA hexamers and 12 CA pentamers. CA assembly requires conformational flexibility of each unit, resulting in the presence of unique, solvent-accessible surfaces. Significant advances have improved our understanding of the roles of the capsid core in replication; however, the contributions of individual CA assembly forms remain unclear and there are limited tools available to evaluate these forms in vivo. Here, we have selected aptamers that bind CA lattice tubes. We describe aptamer CA15-2, which selectively binds CA lattice, but not CA monomer or CA hexamer, suggesting that it targets an interface present and accessible only on CA lattice. CA15-2 does not compete with PF74 for binding, indicating that it likely binds a non-overlapping site. Furthermore, CA15-2 inhibits HIV-1 replication when expressed in virus producer cells, but not target cells, suggesting that it binds a biologically-relevant site during virus production that is either not accessible during post-entry replication steps or is accessible but unaltered by aptamer binding. Importantly, CA15-2 represents the first aptamer that specifically recognizes the HIV-1 CA lattice.


Assuntos
Aptâmeros de Nucleotídeos , HIV-1 , Aptâmeros de Nucleotídeos/metabolismo , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , HIV-1/metabolismo , Replicação Viral/genética
5.
mBio ; 10(4)2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31266880

RESUMO

Human immunodeficiency virus type 1 (HIV-1) Tat binds the viral RNA structure transactivation-responsive element (TAR) and recruits transcriptional cofactors, amplifying viral mRNA expression. The Tat inhibitor didehydro-cortistatin A (dCA) promotes a state of persistent latency, refractory to viral reactivation. Here we investigated mechanisms of HIV-1 resistance to dCA in vitro Mutations in Tat and TAR were not identified, consistent with the high level of conservation of these elements. Instead, viruses resistant to dCA developed higher Tat-independent basal transcription. We identified a combination of mutations in the HIV-1 promoter that increased basal transcriptional activity and modifications in viral Nef and Vpr proteins that increased NF-κB activity. Importantly, these variants are unlikely to enter latency due to accrued transcriptional fitness and loss of sensitivity to Tat feedback loop regulation. Furthermore, cells infected with these variants become more susceptible to cytopathic effects and immune-mediated clearance. This is the first report of viral escape to a Tat inhibitor resulting in heightened Tat-independent activity, all while maintaining wild-type Tat and TAR.IMPORTANCE HIV-1 Tat enhances viral RNA transcription by binding to TAR and recruiting activating factors. Tat enhances its own transcription via a positive-feedback loop. Didehydro-cortistatin A (dCA) is a potent Tat inhibitor, reducing HIV-1 transcription and preventing viral rebound. dCA activity demonstrates the potential of the "block-and-lock" functional cure approaches. We investigated the viral genetic barrier to dCA resistance in vitro While mutations in Tat and TAR were not identified, mutations in the promoter and in the Nef and Vpr proteins promoted high Tat-independent activity. Promoter mutations increased the basal transcription, while Nef and Vpr mutations increased NF-κB nuclear translocation. This heightened transcriptional activity renders CD4+ T cells infected with these viruses more susceptible to cytotoxic T cell-mediated killing and to cell death by cytopathic effects. Results provide insights on drug resistance to a novel class of antiretrovirals and reveal novel aspects of viral transcriptional regulation.


Assuntos
Fármacos Anti-HIV/farmacologia , Farmacorresistência Viral , Regulação Viral da Expressão Gênica , HIV-1/crescimento & desenvolvimento , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Isoquinolinas/farmacologia , Transcrição Gênica , Produtos do Gene tat do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Linhagem Celular , HIV-1/genética , Humanos , RNA Mensageiro/biossíntese , RNA Viral/biossíntese , Regulação para Cima , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
6.
J Pept Sci ; 25(4): e3155, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30809901

RESUMO

Previously, we reported the discovery of macrocyclic peptide triazoles (cPTs) that bind to HIV-1 Env gp120, inhibit virus cell infection with nanomolar potencies, and cause irreversible virion inactivation. Given the appealing virus-killing activity of cPTs and resistance to protease cleavage observed in vitro, we here investigated in vivo pharmacokinetics of the cPT AAR029b. AAR029b was investigated both alone and encapsulated in a PEGylated liposome formulation that was designed to slowly release inhibitor. Pharmacokinetic analysis in rats showed that the half-life of FITC-AAR029b was substantial both alone and liposome-encapsulated, 2.92 and 8.87 hours, respectively. Importantly, liposome-encapsulated FITC-AAR029b exhibited a 15-fold reduced clearance rate from serum compared with the free FITC-cPT. This work thus demonstrated both the in vivo stability of cPT alone and the extent of pharmacokinetic enhancement via liposome encapsulation. The results obtained open the way to further develop cPTs as long-acting HIV-1 inactivators against HIV-1 infection.


Assuntos
Fármacos Anti-HIV/farmacocinética , HIV-1/efeitos dos fármacos , Compostos Macrocíclicos/farmacocinética , Peptídeos/farmacocinética , Triazóis/farmacocinética , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Lipossomos , Compostos Macrocíclicos/química , Compostos Macrocíclicos/farmacologia , Testes de Sensibilidade Microbiana , Peptídeos/química , Peptídeos/farmacologia , Triazóis/química , Triazóis/farmacologia
7.
Org Biomol Chem ; 15(37): 7770-7782, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-28770939

RESUMO

HIV-1 entry inhibition remains an urgent need for AIDS drug discovery and development. We previously reported the discovery of cyclic peptide triazoles (cPTs) that retain the HIV-1 irreversible inactivation functions of the parent linear peptides (PTs) and have massively increased proteolytic resistance. Here, in an initial structure-activity relationship investigation, we evaluated the effects of variations in key structural and functional components of the cPT scaffold in order to produce a platform for developing next-generation cPTs. Some structural elements, including stereochemistry around the cyclization residues and Ile and Trp side chains in the gp120-binding pharmacophore, exhibited relatively low tolerance for change, reflecting the importance of these components for function. In contrast, in the pharmacophore-central triazole position, the ferrocene moiety could be successfully replaced with smaller aromatic rings, where a p-methyl-phenyl methylene moiety gave cPT 24 with an IC50 value of 180 nM. Based on the observed activity of the biphenyl moiety when installed on the triazole ring (cPT 23, IC50 ∼ 269 nM), we further developed a new on-resin synthetic method to easily access the bi-aryl system during cPT synthesis, in good yields. A thiophene-containing cPT AAR029N2 (36) showed enhanced entropically favored binding to Env gp120 and improved antiviral activity (IC50 ∼ 100 nM) compared to the ferrocene-containing analogue. This study thus provides a crucial expansion of chemical space in the pharmacophore to use as a starting point, along with other allowable structural changes, to guide future optimization and minimization for this important class of HIV-1 killing agents.


Assuntos
Fármacos Anti-HIV/farmacologia , Proteína gp120 do Envelope de HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Compostos Macrocíclicos/farmacologia , Triazóis/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Relação Dose-Resposta a Droga , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química
8.
Nanoscale ; 8(30): 14420-31, 2016 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-27321911

RESUMO

Solid-state nanopores have been widely used in the past for single-particle analysis of nanoparticles, liposomes, exosomes and viruses. The shape of soft particles, particularly liposomes with a bilayer membrane, can greatly differ inside the nanopore compared to bulk solution as the electric field inside the nanopores can cause liposome electrodeformation. Such deformations can compromise size measurement and characterization of particles, but are often neglected in nanopore resistive pulse sensing. In this paper, we investigated the deformation of various liposomes inside nanopores. We observed a significant difference in resistive pulse characteristics between soft liposomes and rigid polystyrene nanoparticles especially at higher applied voltages. We used theoretical simulations to demonstrate that the difference can be explained by shape deformation of liposomes as they translocate through the nanopores. Comparing our results with the findings from electrodeformation experiments, we demonstrated that the rigidity of liposomes can be qualitatively compared using resistive pulse characteristics. This application of nanopores can provide new opportunities to study the mechanics at the nanoscale, to investigate properties of great value in fundamental biophysics and cellular mechanobiology, such as virus deformability and fusogenicity, and in applied sciences for designing novel drug/gene delivery systems.

9.
Biochemistry ; 55(3): 447-58, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26713837

RESUMO

Peptide triazole thiols (PTTs) have been found previously to bind to HIV-1 Env spike gp120 and cause irreversible virus inactivation by shedding gp120 and lytically releasing luminal capsid protein p24. Since the virions remain visually intact, lysis appears to occur via limited membrane destabilization. To better understand the PTT-triggered membrane transformation involved, we investigated the role of envelope cholesterol on p24 release by measuring the effect of cholesterol depletion using methyl beta-cyclodextrin (MßCD). An unexpected bell-shaped response of PTT-induced lysis to [MßCD] was observed, involving lysis enhancement at low [MßCD] vs loss of function at high [MßCD]. The impact of cholesterol depletion on PTT-induced lysis was reversed by adding exogenous cholesterol and other sterols that support membrane rafts, while sterols that do not support rafts induced only limited reversal. Cholesterol depletion appears to cause a reduced energy barrier to lysis as judged by decreased temperature dependence with MßCD. Enhancement/replenishment responses to [MßCD] also were observed for HIV-1 infectivity, consistent with a similar energy barrier effect in the membrane transformation of virus cell fusion. Overall, the results argue that cholesterol in the HIV-1 envelope is important for balancing virus stability and membrane transformation, and that partial depletion, while increasing infectivity, also makes the virus more fragile. The results also reinforce the argument that the lytic inactivation and infectivity processes are mechanistically related and that membrane transformations occurring during lysis can provide an experimental window to investigate membrane and protein factors important for HIV-1 cell entry.


Assuntos
Colesterol/metabolismo , HIV-1/fisiologia , Lipídeos de Membrana/metabolismo , Linhagem Celular Tumoral , Proteína do Núcleo p24 do HIV/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/efeitos dos fármacos , HIV-1/patogenicidade , Humanos , Fluidez de Membrana , Peptídeos/química , Peptídeos/farmacologia , Compostos de Sulfidrila/química , Compostos de Sulfidrila/farmacologia , Tiazóis/química , Tiazóis/farmacologia , Triazóis/química , Triazóis/farmacologia , beta-Ciclodextrinas/farmacologia
10.
ACS Chem Biol ; 10(12): 2861-73, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26458166

RESUMO

We investigated the mode of action underlying lytic inactivation of HIV-1 virions by peptide triazole thiol (PTT), in particular the relationship between gp120 disulfides and the C-terminal cysteine-SH required for virolysis. Obligate PTT dimer obtained by PTT SH cross-linking and PTTs with serially truncated linkers between pharmacophore isoleucine-ferrocenyltriazole-proline-tryptophan and cysteine-SH were synthesized. PTT variants showed loss of lytic activity but not binding and infection inhibition upon SH blockade. A disproportionate loss of lysis activity vs binding and infection inhibition was observed upon linker truncation. Molecular docking of PTT onto gp120 argued that, with sufficient linker length, the peptide SH could approach and disrupt several alternative gp120 disulfides. Inhibition of lysis by gp120 mAb 2G12, which binds at the base of the V3 loop, as well as disulfide mutational effects, argued that PTT-induced disruption of the gp120 disulfide cluster at the base of the V3 loop is an important step in lytic inactivation of HIV-1. Further, PTT-induced lysis was enhanced after treating virus with reducing agents dithiothreitol and tris (2-carboxyethyl)phosphine. Overall, the results are consistent with the view that the binding of PTT positions the peptide SH group to interfere with conserved disulfides clustered proximal to the CD4 binding site in gp120, leading to disulfide exchange in gp120 and possibly gp41, rearrangement of the Env spike, and ultimately disruption of the viral membrane. The dependence of lysis activity on thiol-disulfide interaction may be related to intrinsic disulfide exchange susceptibility in gp120 that has been reported previously to play a role in HIV-1 cell infection.


Assuntos
Dissulfetos/farmacologia , Proteína gp120 do Envelope de HIV/química , HIV-1/efeitos dos fármacos , Compostos de Sulfidrila/farmacologia , Inativação de Vírus , Antivirais/química , Antivirais/farmacologia , Sítios de Ligação , Dimerização , Dissulfetos/química , Relação Dose-Resposta a Droga , Proteína gp120 do Envelope de HIV/genética , Humanos , Concentração Inibidora 50 , Modelos Biológicos , Simulação de Acoplamento Molecular , Mutação , Peptídeos/química , Peptídeos/farmacologia , Compostos de Sulfidrila/química , Triazóis/química , Triazóis/farmacologia
11.
J Med Chem ; 58(18): 7603-8, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26331669

RESUMO

We derived macrocyclic HIV-1 antagonists as a new class of peptidomimetic drug leads. Cyclic peptide triazoles (cPTs) retained the gp120 inhibitory and virus-inactivating signature of parent PTs, arguing that cyclization locked an active conformation. The six-residue cPT 9 (AAR029b) exhibited submicromolar antiviral potencies in inhibiting cell infection and triggering gp120 shedding that causes irreversible virion inactivation. Importantly, cPTs were stable to trypsin and chymotrypsin compared to substantial susceptibility of corresponding linear PTs.


Assuntos
Fármacos Anti-HIV/química , Proteína gp120 do Envelope de HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Oligopeptídeos/química , Peptídeos Cíclicos/química , Triazóis/química , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/farmacologia , Linhagem Celular , Quimotripsina/química , HIV-1/fisiologia , Humanos , Modelos Moleculares , Oligopeptídeos/síntese química , Oligopeptídeos/farmacologia , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/farmacologia , Conformação Proteica , Triazóis/síntese química , Triazóis/farmacologia , Tripsina/química , Vírion/efeitos dos fármacos , Vírion/fisiologia , Internalização do Vírus
12.
J Med Chem ; 58(9): 3843-58, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25860784

RESUMO

We used coordinated mutagenesis, synthetic design, and flexible docking to investigate the structural mechanism of Env gp120 encounter by peptide triazole (PT) inactivators of HIV-1. Prior results demonstrated that the PT class of inhibitors suppresses binding at both CD4 and coreceptor sites on Env and triggers gp120 shedding, leading to cell-independent irreversible virus inactivation. Despite these enticing anti-HIV-1 phenotypes, structural understanding of the PT-gp120 binding mechanism has been incomplete. Here we found that PT engages two inhibitor ring moieties at the junction between the inner and outer domains of the gp120 protein. The results demonstrate how combined occupancy of two gp120 cavities can coordinately suppress both receptor and coreceptor binding and conformationally entrap the protein in a destabilized state. The two-cavity model has common features with small molecule gp120 inhibitor binding sites and provides a guide for further design of peptidomimetic HIV-1 inactivators based on the PT pharmacophore.


Assuntos
Fármacos Anti-HIV/química , Proteína gp120 do Envelope de HIV/química , HIV-1/química , Peptídeos/química , Peptidomiméticos/química , Triazóis/química , Fármacos Anti-HIV/farmacologia , Anticorpos Monoclonais/química , Sítios de Ligação , Antígenos CD4/química , HIV-1/efeitos dos fármacos , HIV-1/genética , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Mutação , Peptídeos/farmacologia , Peptidomiméticos/farmacologia , Ligação Proteica , Relação Estrutura-Atividade , Termodinâmica , Triazóis/farmacologia , Inativação de Vírus
13.
Biochemistry ; 53(21): 3403-14, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24801282

RESUMO

The HIV-1 gp120 glycoprotein is the main viral surface protein responsible for initiation of the entry process and, as such, can be targeted for the development of entry inhibitors. We previously identified a class of broadly active peptide triazole (PT) dual antagonists that inhibit gp120 interactions at both its target receptor and coreceptor binding sites, induce shedding of gp120 from virus particles prior to host-cell encounter, and consequently can prevent viral entry and infection. However, our understanding of the conformational alterations in gp120 by which PT elicits its dual receptor antagonism and virus inactivation functions is limited. Here, we used a recently developed computational model of the PT-gp120 complex as a blueprint to design a covalently conjugated PT-gp120 recombinant protein. Initially, a single-cysteine gp120 mutant, E275CYU-2, was expressed and characterized. This variant retains excellent binding affinity for peptide triazoles, for sCD4 and other CD4 binding site (CD4bs) ligands, and for a CD4-induced (CD4i) ligand that binds the coreceptor recognition site. In parallel, we synthesized a PEGylated and biotinylated peptide triazole variant that retained gp120 binding activity. An N-terminally maleimido variant of this PEGylated PT, denoted AE21, was conjugated to E275C gp120 to produce the AE21-E275C covalent conjugate. Surface plasmon resonance interaction analysis revealed that the PT-gp120 conjugate exhibited suppressed binding of sCD4 and 17b to gp120, signatures of a PT-bound state of envelope protein. Similar to the noncovalent PT-gp120 complex, the covalent conjugate was able to bind the conformationally dependent mAb 2G12. The results argue that the PT-gp120 conjugate is structurally organized, with an intramolecular interaction between the PT and gp120 domains, and that this structured state embodies a conformationally entrapped gp120 with an altered bridging sheet but intact 2G12 epitope. The similarities of the PT-gp120 conjugate to the noncovalent PT-gp120 complex support the orientation of binding of PT to gp120 predicted in the molecular dynamics simulation model of the PT-gp120 noncovalent complex. The conformationally stabilized covalent conjugate can be used to expand the structural definition of the PT-induced "off" state of gp120, for example, by high-resolution structural analysis. Such structures could provide a guide for improving the subsequent structure-based design of inhibitors with the peptide triazole mode of action.


Assuntos
Proteína gp120 do Envelope de HIV/química , HIV-1 , Peptídeos/química , Triazóis/química , Anticorpos Monoclonais/química , Sítios de Ligação , Biotinilação , Antígenos CD4/química , Proteína gp120 do Envelope de HIV/antagonistas & inibidores , Proteína gp120 do Envelope de HIV/genética , Simulação de Dinâmica Molecular , Mutação , Polietilenoglicóis/química
14.
Retrovirology ; 10: 153, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24330857

RESUMO

BACKGROUND: We examined the underlying mechanism of action of the peptide triazole thiol, KR13 that has been shown previously to specifically bind gp120, block cell receptor site interactions and potently inhibit HIV-1 infectivity. RESULTS: KR13, the sulfhydryl blocked KR13b and its parent non-sulfhydryl peptide triazole, HNG156, induced gp120 shedding but only KR13 induced p24 capsid protein release. The resulting virion post virolysis had an altered morphology, contained no gp120, but retained gp41 that bound to neutralizing gp41 antibodies. Remarkably, HIV-1 p24 release by KR13 was inhibited by enfuvirtide, which blocks formation of the gp41 6-helix bundle during membrane fusion, while no inhibition of p24 release occurred for enfuvirtide-resistant virus. KR13 thus appears to induce structural changes in gp41 normally associated with membrane fusion and cell entry. The HIV-1 p24 release induced by KR13 was observed in several clades of HIV-1 as well as in fully infectious HIV-1 virions. CONCLUSIONS: The antiviral activity of KR13 and its ability to inactivate virions prior to target cell engagement suggest that peptide triazole thiols could be highly effective in inhibiting HIV transmission across mucosal barriers and provide a novel probe to understand biochemical signals within envelope that are involved in membrane fusion.


Assuntos
Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/efeitos dos fármacos , Peptídeos/metabolismo , Compostos de Sulfidrila/metabolismo , Triazóis/metabolismo , Vírion/efeitos dos fármacos , Inativação de Vírus , Antivirais/metabolismo , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/metabolismo , Humanos , Conformação Proteica
15.
Molecules ; 18(8): 9797-817, 2013 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-23959192

RESUMO

Click chemistry is an efficient and chemoselective synthetic method for coupling molecular fragments under mild reaction conditions. Since the advent in 2001 of methods to improve stereochemical conservation, the click chemistry approach has been broadly used to construct diverse chemotypes in both chemical and biological fields. In this review, we discuss the application of click chemistry in peptide-based drug design. We highlight how triazoles formed by click reactions have been used for mimicking peptide and disulfide bonds, building secondary structural components of peptides, linking functional groups together, and bioconjugation. The progress made in this field opens the way for synthetic approaches to convert peptides with promising functional leads into structure-minimized and more stable forms.


Assuntos
Química Click/métodos , Desenho de Fármacos , Peptídeos/química , Estrutura Molecular
16.
Biochemistry ; 52(49): 8957-68, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-23919427

RESUMO

To examine the global function of the key surface-exposed loops of streptokinase, bearing substrate-specific exosites, namely, the 88-97 loop in the α domain, the 170 loop in the ß domain, and the coiled-coil region (Leu321-Asn338) in the γ domain, mutagenic as well as peptide inhibition studies were carried out. Peptides corresponded to the primary structure of an exosite, either individual or stoichiometric mixtures of various disulfide-constrained synthetic peptide(s) inhibited plasminogen activation by streptokinase. Remarkably, pronounced inhibition of substrate plasminogen activation by the preformed streptokinase-plasmin activator complex was observed when complementary mixtures of different peptides were used compared to the same overall concentrations of individual peptides, suggesting co-operative interactions between the exosites. This observation was confirmed with streptokinase variants mutated at one, two, or three sites simultaneously. The single/double/triple exosite mutants of streptokinase showed a nonadditive, synergistic decline in kcat for substrate plasminogen activation in the order single > double > triple exosite mutant. Under the same conditions, zymogen activation by the various mutants remained essentially native- like in terms of nonproteolytic activation of partner plasminogen. Multisite mutants also retain affinity to form 1:1 stoichiometric activator complexes with plasmin when probed through sensitive equilibrium fluorescence studies. Thus, the present results strongly support a model of streptokinase action, wherein catalysis by the streptokinase-plasmin complex operates through a distributed network of substrate-interacting exosites resident across all three domains of the cofactor protein.


Assuntos
Proteínas de Bactérias/química , Plasminogênio/química , Streptococcus/enzimologia , Estreptoquinase/química , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Biocatálise , Domínio Catalítico , Ativação Enzimática , Humanos , Cinética , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estreptoquinase/genética
17.
ChemMedChem ; 8(2): 322-8, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23239505

RESUMO

We investigated the derivation of non-natural peptide triazole dual receptor site antagonists of HIV-1 Env gp120 to establish a pathway for developing peptidomimetic antiviral agents. Previously we found that the peptide triazole HNG-156 [R-I-N-N-I-X-W-S-E-A-M-M-CONH(2), in which X=ferrocenyltriazole-Pro (FtP)] has nanomolar binding affinity to gp120, inhibits gp120 binding to CD4 and the co-receptor surrogate mAb 17b, and has potent antiviral activity in cell infection assays. Furthermore, truncated variants of HNG-156, typified by UM-24 (Cit-N-N-I-X-W-S-CONH(2)) and containing the critical central stereospecific (L)X-(L)W cluster, retain the functional characteristics of the parent peptide triazole. In the current work, we examined the possibility of replacing natural with unnatural residue components in UM-24 to the greatest extent possible. The analogue with the critical "hot spot" residue Trp 6 replaced with L-3-benzothienylalanine (Bta) (KR-41), as well as a completely non-natural analogue containing D-amino acid substitutions outside the central cluster (KR-42, (D)Cit-(D)N-(D)N-(D)I-X-Bta-(D)S-CONH(2)), retained the dual receptor site antagonism/antiviral activity signature. The results define differential functional roles of subdomains within the peptide triazole and provide a structural basis for the design of metabolically stable peptidomimetic inhibitors of HIV-1 Env gp120.


Assuntos
Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Proteína gp120 do Envelope de HIV/antagonistas & inibidores , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Sequência de Aminoácidos , Calorimetria , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/virologia , HIV-1/metabolismo , Humanos , Peptidomiméticos/química , Peptidomiméticos/farmacologia , Ligação Proteica , Triazóis/química , Triazóis/farmacologia
18.
J Biol Chem ; 286(8): 6458-69, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21169351

RESUMO

To identify new structure-function correlations in the γ domain of streptokinase, mutants were generated by error-prone random mutagenesis of the γ domain and its adjoining region in the ß domain followed by functional screening specifically for substrate plasminogen activation. Single-site mutants derived from various multipoint mutation clusters identified the importance of discrete residues in the γ domain that are important for substrate processing. Among the various residues, aspartate at position 328 was identified as critical for substrate human plasminogen activation through extensive mutagenesis of its side chain, namely D328R, D328H, D328N, and D328A. Other mutants found to be important in substrate plasminogen activation were, namely, R319H, N339S, K334A, K334E, and L335Q. When examined for their 1:1 interaction with human plasmin, these mutants were found to retain the native-like high affinity for plasmin and also to generate amidolytic activity with partner plasminogen in a manner similar to wild type streptokinase. Moreover, cofactor activities of the mutants precomplexed with plasmin against microplasminogen as the substrate as well as in silico modeling studies suggested that the region 315-340 of the γ domain interacts with the serine protease domain of the macromolecular substrate. Overall, our results identify the presence of a substrate specific exosite in the γ domain of streptokinase.


Assuntos
Proteínas de Bactérias/química , Fibrinolíticos/química , Modelos Moleculares , Streptococcus/enzimologia , Estreptoquinase/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fibrinolíticos/metabolismo , Humanos , Mutagênese , Mutação de Sentido Incorreto , Estrutura Terciária de Proteína , Streptococcus/genética , Estreptoquinase/genética , Estreptoquinase/metabolismo , Relação Estrutura-Atividade
19.
J Biol Chem ; 284(47): 32642-50, 2009 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-19801674

RESUMO

With the goal of identifying hitherto unknown surface exosites of streptokinase involved in substrate human plasminogen recognition and catalytic turnover, synthetic peptides encompassing the 170 loop (CQFTPLNPDDDFRPGLKDTKLLC) in the beta-domain were tested for selective inhibition of substrate human plasminogen activation by the streptokinase-plasmin activator complex. Although a disulfide-constrained peptide exhibited strong inhibition, a linear peptide with the same sequence, or a disulfide-constrained variant with a single lysine to alanine mutation showed significantly reduced capabilities of inhibition. Alanine-scanning mutagenesis of the 170 loop of the beta-domain of streptokinase was then performed to elucidate its importance in streptokinase-mediated plasminogen activation. Some of the 170 loop mutants showed a remarkable decline in k(cat) without any alteration in apparent substrate affinity (K(m)) as compared with wild-type streptokinase and identified the importance of Lys(180) as well as Pro(177) in the functioning of this loop. Remarkably, these mutants were able to generate amidolytic activity and non-proteolytic activation in "partner" plasminogen as wild-type streptokinase. Moreover, cofactor activities of the 170 loop mutants, pre-complexed with plasmin, against microplasminogen as the substrate showed a similar pattern of decline in k(cat) as that observed in the case of full-length plasminogen, with no concomitant change in K(m). These results strongly suggest that the 170 loop of the beta-domain of streptokinase is important for catalysis by the streptokinase-plasmin(ogen) activator complex, particularly in catalytic processing/turnover of substrate, although it does not seem to contribute significantly toward enzyme-substrate affinity per se.


Assuntos
Plasminogênio/metabolismo , Estreptoquinase/metabolismo , Alanina/química , Sequência de Aminoácidos , Domínio Catalítico , Relação Dose-Resposta a Droga , Humanos , Cinética , Dados de Sequência Molecular , Mutagênese , Mutação , Peptídeos/química , Plasminogênio/química , Conformação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA