Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38255976

RESUMO

Thoracic aortic aneurysm (TAA) has a prevalence of 0.16-0.34% and an incidence of 7.6 per 100,000 person-years, accounting for 1-2% of all deaths in Western countries. Currently, no effective pharmacological therapies have been identified to slow TAA development and prevent TAA rupture. Large TAAs are treated with open surgical repair and less invasive thoracic endovascular aortic repair, both of which have high perioperative mortality risk. Therefore, there is an urgent medical need to identify the cellular and molecular mechanisms underlying TAA development and rupture to develop new therapies. In this review, we summarize animal TAA models including recent developments in porcine and zebrafish models: porcine models can assess new therapeutic devices or intervention strategies in a large mammal and zebrafish models can employ large-scale small-molecule suppressor screening in microwells. The second part of the review covers current views of TAA pathogenesis, derived from recent studies using these animal models, with a focus on the roles of the transforming growth factor-beta (TGFß) pathway and the vascular smooth muscle cell (VSMC)-elastin-contractile unit. The last part discusses TAA treatment options as they emerge from recent preclinical studies.


Assuntos
Aneurisma da Aorta Torácica , Ruptura Aórtica , Humanos , Animais , Suínos , Peixe-Zebra , Aneurisma da Aorta Torácica/etiologia , Aneurisma da Aorta Torácica/terapia , Modelos Animais , Contração Muscular , Mamíferos
2.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37685939

RESUMO

Atherosclerosis is characterized by the narrowing of the arterial lumen due to subendothelial lipid accumulation, with hypercholesterolemia being a major risk factor. Despite the recent advances in effective lipid-lowering therapies, atherosclerosis remains the leading cause of mortality globally, highlighting the need for additional therapeutic strategies. Accumulating evidence suggests that the sympathetic nervous system plays an important role in atherosclerosis. In this article, we reviewed the sympathetic innervation in the vasculature, norepinephrine synthesis and metabolism, sympathetic activity measurement, and common signaling pathways of sympathetic activation. The focus of this paper was to review the effectiveness of pharmacological antagonists or agonists of adrenoceptors (α1, α2, ß1, ß2, and ß3) and renal denervation on atherosclerosis. All five types of adrenoceptors are present in arterial blood vessels. α1 blockers inhibit atherosclerosis but increase the risk of heart failure while α2 agonism may protect against atherosclerosis and newer generations of ß blockers and ß3 agonists are promising therapies against atherosclerosis; however, new randomized controlled trials are warranted to investigate the effectiveness of these therapies in atherosclerosis inhibition and cardiovascular risk reduction in the future. The role of renal denervation in atherosclerosis inhibition in humans is yet to be established.


Assuntos
Aterosclerose , Insuficiência Cardíaca , Hipercolesterolemia , Humanos , Sistema Nervoso Simpático , Receptores Adrenérgicos , Lipídeos
3.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835270

RESUMO

This study aimed to investigate the effect of the sympatholytic drug moxonidine on atherosclerosis. The effects of moxonidine on oxidised low-density lipoprotein (LDL) uptake, inflammatory gene expression and cellular migration were investigated in vitro in cultured vascular smooth muscle cells (VSMCs). The effect of moxonidine on atherosclerosis was measured by examining aortic arch Sudan IV staining and quantifying the intima-to-media ratio of the left common carotid artery in apolipoprotein E-deficient (ApoE-/-) mice infused with angiotensin II. The levels of circulating lipid hydroperoxides in mouse plasma were measured by ferrous oxidation-xylenol orange assay. Moxonidine administration increased oxidised LDL uptake by VSMCs via activation of α2 adrenoceptors. Moxonidine increased the expression of LDL receptors and the lipid efflux transporter ABCG1. Moxonidine inhibited mRNA expression of inflammatory genes and increased VSMC migration. Moxonidine administration to ApoE-/- mice (18 mg/kg/day) decreased atherosclerosis formation in the aortic arch and left common carotid artery, associated with increased plasma lipid hydroperoxide levels. In conclusion, moxonidine inhibited atherosclerosis in ApoE-/- mice, which was accompanied by an increase in oxidised LDL uptake by VSMCs, VSMC migration, ABCG1 expression in VSMCs and lipid hydroperoxide levels in the plasma.


Assuntos
Aterosclerose , Imidazóis , Lipoproteínas LDL , Músculo Liso Vascular , Animais , Camundongos , Apolipoproteínas E/metabolismo , Aterosclerose/metabolismo , Proliferação de Células , Células Cultivadas , Peróxidos Lipídicos/metabolismo , Lipoproteínas LDL/metabolismo , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Imidazóis/farmacologia
4.
J Pharm Pharmacol ; 74(4): 485-502, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33822141

RESUMO

OBJECTIVES: The pathophysiology of chronic wounds typically involves redox imbalance and inflammation pathway dysregulation, often with concomitant microbial infection. Endogenous antioxidants such as glutathione and tocopherols are notably reduced or absent, indicative of significant oxidative imbalance. However, emerging evidence suggests that polyphenols could be effective agents for the amelioration of this condition. This review aims to summarise the current state of knowledge surrounding redox imbalance in the chronic wound environment and the potential use of polyphenols for the treatment of chronic wounds. KEY FINDINGS: Polyphenols provide a multi-faceted approach towards the treatment of chronic wounds. Firstly, their antioxidant activity allows direct neutralisation of harmful free radicals and reactive oxygen species, assisting in restoring redox balance. Upregulation of pro-healing and anti-inflammatory gene pathways and enzymes by specific polyphenols further acts to reduce redox imbalance and promote wound healing actions, such as proliferation, extracellular matrix deposition and tissue remodelling. Finally, many polyphenols possess antimicrobial activity, which can be beneficial for preventing or resolving infection of the wound site. SUMMARY: Exploration of this diverse group of natural compounds may yield effective and economical options for the prevention or treatment of chronic wounds.


Assuntos
Estresse Oxidativo , Polifenóis , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Oxirredução , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo
5.
Assay Drug Dev Technol ; 19(3): 184-190, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33471568

RESUMO

The 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay is one of the most commonly used tests of cell proliferation. Hydralazine has been reported to interfere with the performance of the MTS assay when used on adherent cells. This study aimed to investigate whether hydralazine interferes with the performance of the MTS assay on suspended cells. THP-1 (a monocytic leukemia cell line) cells were cultured in the presence or absence of hydralazine (0, 10, 50, 100, and 500 µM) for 2 or 24 h. Cell numbers were analyzed using the MTS, trypan blue exclusion, or microscopic assays. A modified version of the standard MTS assay was established by centrifuging the cells and replacing the test medium with fresh culture medium immediately before the addition of the MTS reagent. Culture of THP-1 cells with hydralazine at concentrations of 50, 100, and 500 µM for 2 h increased absorbance (p < 0.001) in the standard MTS assay, whereas both the trypan blue exclusion assay and microscopy suggested no change in cell numbers. Culture of THP-1 cells with 100 and 500 µm hydralazine for 24 h increased absorbance (p < 0.05) in the standard MTS assay; however, trypan blue exclusion and microscopy suggested a decrease in cell numbers. In a cell-free system, hydralazine (100 and 500 µM) increased absorbance in a time- and concentration-dependent manner. The modified MTS assay produced results consistent with trypan blue exclusion and microscopy using THP-1 cells. In addition, the modified MTS assay produced reliable results when K562 and Jurkat cells were incubated with hydralazine or ß-mercaptoethanol (ßME). In conclusion, a simple modification of the standard MTS assay overcame the interference of hydralazine and ßME when assessing suspended cells.


Assuntos
Proliferação de Células/efeitos dos fármacos , Hidralazina/farmacologia , Mercaptoetanol/farmacologia , Sais de Tetrazólio/farmacologia , Tiazóis/farmacologia , Sistema Livre de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Células Jurkat/efeitos dos fármacos , Microscopia , Células THP-1/efeitos dos fármacos
6.
Assay Drug Dev Technol ; 18(8): 379-384, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32907338

RESUMO

The MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay is one of the most commonly used assays to assess cell proliferation and cytotoxicity, but is subject to interference by testing compounds. Hydralazine, an antihypertensive drug, is commonly investigated in multiple fields such as heart failure, cancer, and blood pressure research. This study reported interference of the MTS assay by hydralazine and a simple modification overcoming this interference. Vascular smooth muscle cells were cultured in the presence or absence of hydralazine (0, 10, 50,100, and 500 µM) for 2 or 24 h. Cell numbers were analyzed using MTS, trypan blue exclusion, or microscopic assays. A modified version of the standard MTS assay was established, in which an additional step was added replacing the test medium, containing hydralazine, with fresh culture medium immediately before the addition of the MTS reagent. Culture with hydralazine at concentrations of 50, 100, and 500 µM for 2 h increased absorbance (p < 0.05) in the standard MTS assay, whereas microscopy suggested no change in cell numbers. Culture with 500 µm hydralazine for 24 h increased absorbance (p < 0.05) in the standard MTS assay, however, trypan blue exclusion and microscopy suggested a decrease in cell numbers. In a cell-free system, hydralazine (≥10 µM) increased absorbance in a concentration-dependent manner. The modified MTS assay produced results consistent with trypan blue exclusion and microscopy. In conclusion, a simple modification of the standard MTS assay overcame the interference of hydralazine and may be useful to avoid interference from other tested compounds.


Assuntos
Hidralazina/antagonistas & inibidores , Sais de Tetrazólio/farmacologia , Tiazóis/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Hidralazina/farmacologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA