Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(3)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572971

RESUMO

Understanding protein stability is critical for the application of enzymes in biotechnological processes. The structural basis for the stability of thermally adapted chitinases has not yet been examined. In this study, the amino acid sequences and X-ray structures of psychrophilic, mesophilic, and hyperthermophilic chitinases were analyzed using computational and molecular dynamics (MD) simulation methods. From the findings, the key features associated with higher stability in mesophilic and thermophilic chitinases were fewer and/or shorter loops, oligomerization, and less flexible surface regions. No consistent trends were observed between stability and amino acid composition, structural features, or electrostatic interactions. Instead, unique elements affecting stability were identified in different chitinases. Notably, hyperthermostable chitinase had a much shorter surface loop compared to psychrophilic and mesophilic homologs, implying that the extended floppy surface region in cold-adapted and mesophilic chitinases may have acted as a "weak link" from where unfolding was initiated. MD simulations confirmed that the prevalence and flexibility of the loops adjacent to the active site were greater in low-temperature-adapted chitinases and may have led to the occlusion of the active site at higher temperatures compared to their thermostable homologs. Following this, loop "hot spots" for stabilizing and destabilizing mutations were also identified. This information is not only useful for the elucidation of the structure-stability relationship, but will be crucial for designing and engineering chitinases to have enhanced thermoactivity and to withstand harsh industrial processing conditions.


Assuntos
Quitinases/química , Estabilidade Enzimática/genética , Extremófilos/química , Conformação Proteica , Sequência de Aminoácidos/genética , Domínio Catalítico/genética , Quitinases/genética , Quitinases/ultraestrutura , Biologia Computacional , Extremófilos/enzimologia , Extremófilos/genética , Temperatura Alta , Simulação de Dinâmica Molecular , Estabilidade Proteica
2.
Front Chem ; 9: 784625, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35155377

RESUMO

A protein's structure is the key to its function. As protein structure can vary with environment, it is important to be able to determine it over a wide range of concentrations, temperatures, formulation vehicles, and states. Robust reproducible validated methods are required for applications including batch-batch comparisons of biopharmaceutical products. Circular dichroism is widely used for this purpose, but an alternative is required for concentrations above 10 mg/mL or for solutions with chiral buffer components that absorb far UV light. Infrared (IR) protein absorbance spectra of the Amide I region (1,600-1700 cm-1) contain information about secondary structure and require higher concentrations than circular dichroism often with complementary spectral windows. In this paper, we consider a number of approaches to extract structural information from a protein infrared spectrum and determine their reliability for regulatory and research purpose. In particular, we compare direct and second derivative band-fitting with a self-organising map (SOM) approach applied to a number of different reference sets. The self-organising map (SOM) approach proved significantly more accurate than the band-fitting approaches for solution spectra. As there is no validated benchmark method available for infrared structure fitting, SOMSpec was implemented in a leave-one-out validation (LOOV) approach for solid-state transmission and thin-film attenuated total reflectance (ATR) reference sets. We then tested SOMSpec and the thin-film ATR reference set against 68 solution spectra and found the average prediction error for helix (α + 310) and ß-sheet was less than 6% for proteins with less than 40% helix. This is quantitatively better than other available approaches. The visual output format of SOMSpec aids identification of poor predictions. We also demonstrated how to convert aqueous ATR spectra to and from transmission spectra for structure fitting. Fourier self-deconvolution did not improve the average structure predictions.

3.
RSC Adv ; 11(39): 23985-23991, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35479026

RESUMO

Many proteins and peptides are increasingly being recognised to contain unfolded domains or populations that are key to their function, whether it is in ligand binding or material assembly. We report an approach to determine the secondary structure for proteins with suspected significant unfolded domains or populations using our neural network approach SOMSpec. We proceed by derandomizing spectra by removing fractions of random coil (RC) spectra prior to secondary structure fitting and then regenerating α-helical and ß-sheet contents for the experimental proteins. Application to bovine serum albumin spectra as a function of temperature proved to be straightforward, whereas lysozyme and insulin have hidden challenges. The importance of being able to interrogate the SOMSpec output to understand the best matching units used in the predictions is illustrated with lysozyme and insulin whose partially melted proteins proved to have significant ßII content and their CD spectrum looks the same as that for a random coil.

4.
J Biol Inorg Chem ; 25(3): 429-440, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32219553

RESUMO

The binding interactions of a series of square-planar platinum(II)-phenanthroline complexes of the type [Pt(PL)(AL)]2+ [where PL = variously methyl-substituted 1,10-phenanthroline (phen) and AL = ethane-1,2-diamine (en)] were assessed with a G-quadruplex DNA (5'-TTG GGG GT-3', G4DNA) and a double-stranded DNA (5'-CGC GAA TTC GCG-3', dsDNA) sequence by ESI-MS. The results indicate a strong correlation between G4DNA affinity and increasing phenanthroline methyl substitution. Circular dichroism (CD) spectroscopy and molecular docking studies also support the finding that increased substitution of the phenanthroline ligand increased selectivity for G4DNA. ESI-MS was used to probe the interaction of a range of square-planar Pt(II)-phenanthroline complexes with double-stranded and G-quadruplex DNA.


Assuntos
Complexos de Coordenação/química , DNA/química , Teoria da Densidade Funcional , Simulação de Acoplamento Molecular , Fenantrolinas/química , Platina/química , Dicroísmo Circular , DNA/isolamento & purificação , Quadruplex G , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray
5.
Curr Med Chem ; 25(4): 478-492, 2018 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-28554317

RESUMO

BACKGROUND: Photodynamic therapy (PDT) is an increasingly prominent field in anticancer research. PDT agents are typically nontoxic in the absence of light and can be stimulated with nonionising irradiation to "activate" their cytotoxic effect. Photosensitzers are not classified as chemotherapy drugs although it is advantageous to control the toxicity of a drug through localised irradiation allowing for selective treatment. Transition metals are an extremely versatile class of compounds with various unique properties such as oxidation state, coordination number, redox potential and molecular geometry that can be tailored for specific uses. This makes them excellent PDT candidates as their properties can be manipulated to absorb a specific range of light wavelengths, cross cellular membranes or target specific sites in vitro. This article reviews recent advances in transition metal PDT agents, with a focus on structural scaffolds from which several metal complexes in a series are synthesised, as well as their in vitro cytotoxicity in the presence or absence of irradiation. CONCLUSION: The success of clinical photoactive agents such as Photofrin® has inspired the development of thousands of potential PDT agents. Transition metal complexes in particular have demonstrated excellent versatility and diversity when it comes to PDT for treatment of invasive cancers. This review has highlighted some of the many recent advances of transition metal PDT agents with high in vitro and in vivo phototoxic activity. Photoactive transition metal complexes have proven their potential due to their inherent physicochemical variety, allowing them to fill a niche in the PDT world.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Metais/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Humanos , Metais/química , Neoplasias/terapia , Fotoquimioterapia
6.
Analyst ; 141(24): 6490-6498, 2016 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-27840872

RESUMO

Linear dichroism (LD) spectroscopy involves measuring the wavelength (or energy) dependence of the difference in absorption of light parallel and perpendicular to an orientation direction. It requires samples to have a net orientation. The aim of this review is to summarise some UV-visible linear dichroism (LD) methods that can be usefully applied to increase our understanding of biomacromolecules and their complexes that have a high aspect ratio. LD shares the advantages of most spectroscopic techniques including the fact that data collection is fairly straightforward and many sample types can be investigated. Conversely, LD shares the disadvantage that the measured signal is an average over all species in the sample on which the light beam is incident. LD mitigates this disadvantage somewhat in that only species which are oriented give a net signal. How the data can be analysed to give structural information about small molecules in stretched films and membrane systems or bound to biomacromolecules and directly about biomacromolecules such as DNA and protein fibres forms part of this review. In the UV-visible region LD often suffers noticeably from light scattering since the samples tend to be large relative to the wavelength of the incident light, so consideration is also given to data analysis challenges including removal of scattering contributions to an observed signal. Brief mention is made of fluorescence detected LD.

7.
Int J Mol Sci ; 17(11)2016 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-27809241

RESUMO

The diverse anticancer utility of cisplatin has stimulated significant interest in the development of additional platinum-based therapies, resulting in several analogues receiving clinical approval worldwide. However, due to structural and mechanistic similarities, the effectiveness of platinum-based therapies is countered by severe side-effects, narrow spectrum of activity and the development of resistance. Nonetheless, metal complexes offer unique characteristics and exceptional versatility, with the ability to alter their pharmacology through facile modifications of geometry and coordination number. This has prompted the search for metal-based complexes with distinctly different structural motifs and non-covalent modes of binding with a primary aim of circumventing current clinical limitations. This review discusses recent advances in platinum and other transition metal-based complexes with mechanisms of action involving intercalation. This mode of DNA binding is distinct from cisplatin and its derivatives. The metals focused on in this review include Pt, Ru and Cu along with examples of Au, Ni, Zn and Fe complexes; these complexes are capable of DNA intercalation and are highly biologically active.


Assuntos
Antineoplásicos/farmacologia , Substâncias Intercalantes/farmacologia , Metais/farmacologia , Elementos de Transição/farmacologia , Animais , Antineoplásicos/química , Morte Celular/efeitos dos fármacos , Humanos , Substâncias Intercalantes/química
8.
Chemistry ; 22(26): 8943-54, 2016 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-27219069

RESUMO

This study reports a detailed biophysical analysis of the DNA binding and cytotoxicity of six platinum complexes (PCs). They are of the type [Pt(PL )(SS-dach)]Cl2 , where PL is a polyaromatic ligand and SS-dach is 1S,2S-diaminocyclohexane. The DNA binding of these complexes was investigated using six techniques including ultraviolet and fluorescence spectroscopy, linear dichroism, synchrotron radiation circular dichroism, isothermal titration calorimetry and mass spectrometry. This portfolio of techniques has not been extensively used to study the interactions of such complexes previously; each assay provided unique insight. The in vitro cytotoxicity of these compounds was studied in ten cell lines and compared to the effects of their R,R enantiomers; activity was very high in Du145 and SJ-G2 cells, with some submicromolar IC50 values. In terms of both DNA affinity and cytotoxicity, complexes of 5,6-dimethyl-1,10-phenanthroline and 2,2'-bipyridine exhibited the greatest and least activity, respectively, suggesting that there is some correlation between DNA binding and cytotoxicity.


Assuntos
Antineoplásicos/química , Complexos de Coordenação/química , DNA/química , 2,2'-Dipiridil/química , Antineoplásicos/síntese química , Antineoplásicos/toxicidade , Calorimetria , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dicroísmo Circular , Complexos de Coordenação/síntese química , Complexos de Coordenação/toxicidade , DNA/metabolismo , Humanos , Substâncias Intercalantes/química , Espectrometria de Massas , Fenantrolinas/química , Platina/química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
9.
Chemistry ; 22(7): 2317-25, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26670391

RESUMO

Four dinuclear terpyridineplatinum(II) (Pt-terpy) complexes were investigated for interactions with G-quadruplex DNA (QDNA) and duplex DNA (dsDNA) by synchrotron radiation circular dichroism (SRCD), fluorescent intercalator displacement (FID) assays and fluorescence resonance energy transfer (FRET) melting studies. Additionally, computational docking studies were undertaken to provide insight into potential binding modes for these complexes. The complexes demonstrated the ability to increase the melting temperature of various QDNA motifs by up to 17 °C and maintain this in up to a 600-fold excess of dsDNA. This study demonstrates that dinuclear Pt-terpy complexes stabilise QDNA and have a high degree of selectivity for QDNA over dsDNA.


Assuntos
DNA/química , Compostos Organoplatínicos/química , Dicroísmo Circular , Transferência Ressonante de Energia de Fluorescência , Quadruplex G
10.
Analyst ; 140(12): 4162-9, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-25909278

RESUMO

The binding affinity of a series of square planar platinum(II) compounds of the type [Pt(A(L))(I(L))](2+), where A(L) is 1,2-diaminoethane and I(L) are 1,10-phenanthroline (phen), 4-methyl-1,10-phenanthroline (4Mephen), 5-methyl-1,10-phenanthroline (5Mephen), 4,7-dimethyl-1,10-phenanthroline (47Me2phen), 5,6-dimethyl-1,10-phenanthroline (56Me2phen) or 3,4,7,8-tetramethyl-1,10-phenanthroline (3478Me4phen) has been reinvestigated using Synchrotron Radiation Circular Dichroism (SRCD) spectroscopy. The additional peaks exhibited considerably greater intensity than those observed between 200 and 400 nm affording additional binding affinity determinations. In addition, the authors have reviewed the various mathematical approaches used to estimate equilibrium binding constants and thereby demonstrate that their mathematical approach, implemented with Wolfram Mathematica, has merit over other methods.


Assuntos
Dicroísmo Circular/instrumentação , DNA/química , Compostos Organoplatínicos/análise , Compostos Organoplatínicos/química , Síncrotrons , Fenantrolinas/química
11.
Dalton Trans ; 44(8): 3505-26, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-25427534

RESUMO

Increasing numbers of DNA structures are being revealed using biophysical, spectroscopic and genomic methods. The diversity of transition metal complexes is also growing, as the unique contributions that transition metals bring to the overall structure of metal complexes depend on the various coordination numbers, geometries, physiologically relevant redox potentials, as well as kinetic and thermodynamic characteristics. The vast range of ligands that can be utilised must also be considered. Given this diversity, a variety of biological interactions is not unexpected. Specifically, interactions with negatively-charged DNA can arise due to covalent/coordinate or subtle non-coordinate interactions such as electrostatic attraction, groove binding and intercalation as well as combinations of all of these modes. The potential of metal complexes as therapeutic agents is but one aspect of their utility. Complexes, both new and old, are currently being utilised in conjunction with spectroscopic and biological techniques to probe the interactions of DNA and its many structural forms. Here we present a review of metal complex-DNA interactions in which several binding modes and DNA structural forms are explored.


Assuntos
Complexos de Coordenação/química , DNA/química , Sítios de Ligação , Substâncias Intercalantes/química , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico , Platina/química , Rutênio/química , Elementos de Transição/química
12.
Dalton Trans ; 43(41): 15566-75, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25197979

RESUMO

Eight platinum(II) complexes with anticancer potential have been synthesised and characterised. These complexes are of the type [Pt(I(L))(A(L))](2+), where I(L) is either dipyrido[3,2-f:2',3'-h]quinoxaline (dpq) or 2,3-dimethyl-dpq (23Me2dpq) and A(L) is one of the R,R or S,S isomers of either 1,2-diaminocyclohexane (SS-dach or RR-dach) or 1,2-diaminocyclopentane (SS-dacp or RR-dacp). The CT-DNA binding of these complexes and a series of other complexes were assessed using fluorescent intercalator displacement assays, resulting in unexpected trends in DNA binding affinity. The cytotoxicity of the eight synthesised compounds was determined in the L1210 cell line; the most cytotoxic of these were [Pt(dpq)(SS-dach)]Cl2 and [Pt(dpq)(RR-dach)]Cl2, with IC50 values of 0.19 and 0.80 µM, respectively. The X-ray crystal structure of the complex [Pt(dpq)(SS-dach)](ClO4)2·1.75H2O is also reported.


Assuntos
Antineoplásicos/química , DNA/metabolismo , Substâncias Intercalantes/química , Compostos Organoplatínicos/química , Quinoxalinas/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Bovinos , Linhagem Celular Tumoral , Cristalografia por Raios X , Cicloexilaminas/síntese química , Cicloexilaminas/química , Cicloexilaminas/farmacologia , Humanos , Substâncias Intercalantes/síntese química , Substâncias Intercalantes/farmacologia , Modelos Moleculares , Neoplasias/tratamento farmacológico , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/farmacologia , Quinoxalinas/síntese química , Quinoxalinas/farmacologia
13.
Anal Bioanal Chem ; 405(28): 9009-20, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23732867

RESUMO

Branching was detected in polyacrylates synthesised through radical polymerization via solution-state NMR, while inconsistencies have been reported for the determination of the molar mass of hydrophilic polyacrylates using aqueous-phase and organic-phase size-exclusion chromatography. In this work, poly(sodium acrylate)s, PNaAs, of various topologies were separated for the first time using free-solution capillary electrophoresis (CE). Free-solution CE does not separate the PNaAs by their molar mass, similarly to separations by liquid chromatography in the critical conditions, rather by different topologies (linear, star branched, and hyperbranched). The electrophoretic mobility of PNaAs increases as the degree of branching decreases. Separation is shown to be not only by the topology but also by the end groups as expected for a separation in the critical conditions: replacing a relatively bulky nitroxide end group with hydrogen atom yielded a higher electrophoretic mobility. This novel method, capillary electrophoresis in the critical conditions enabled, for the first time, the separation of hydrophilic polyacrylates according to their topology (branching) and their chain ends. This will allow meaningful and accurate characterization of their branched topologies as well as molar masses and progress in for advanced applications such as drug delivery or flocculation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA