Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Elife ; 122024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512721

RESUMO

Rapid lymphocyte cell division places enormous demands on the protein synthesis machinery. Flow cytometric measurement of puromycylated ribosome-associated nascent chains after treating cells or mice with translation initiation inhibitors reveals that ribosomes in resting lymphocytes in vitro and in vivo elongate at typical rates for mammalian cells. Intriguingly, elongation rates can be increased up to 30% by activation in vivo or fever temperature in vitro. Resting and activated lymphocytes possess abundant monosome populations, most of which actively translate in vivo, while in vitro, nearly all can be stalled prior to activation. Quantitating lymphocyte protein mass and ribosome count reveals a paradoxically high ratio of cellular protein to ribosomes insufficient to support their rapid in vivo division, suggesting that the activated lymphocyte proteome in vivo may be generated in an unusual manner. Our findings demonstrate the importance of a global understanding of protein synthesis in lymphocytes and other rapidly dividing immune cells.


Assuntos
Biossíntese de Proteínas , Ribossomos , Camundongos , Animais , Ribossomos/metabolismo , Linfócitos , Citometria de Fluxo , Mamíferos
2.
Cell Rep ; 42(5): 112501, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37178117

RESUMO

Locoregional monotherapy with heterodimeric interleukin (IL)-15 (hetIL-15) in a triple-negative breast cancer (TNBC) orthotopic mouse model resulted in tumor eradication in 40% of treated mice, reduction of metastasis, and induction of immunological memory against breast cancer cells. hetIL-15 re-shaped the tumor microenvironment by promoting the intratumoral accumulation of cytotoxic lymphocytes, conventional type 1 dendritic cells (cDC1s), and a dendritic cell (DC) population expressing both CD103 and CD11b markers. These CD103intCD11b+DCs share phenotypic and gene expression characteristics with both cDC1s and cDC2s, have transcriptomic profiles more similar to monocyte-derived DCs (moDCs), and correlate with tumor regression. Therefore, hetIL-15, a cytokine directly affecting lymphocytes and inducing cytotoxic cells, also has an indirect rapid and significant effect on the recruitment of myeloid cells, initiating a cascade for tumor elimination through innate and adoptive immune mechanisms. The intratumoral CD103intCD11b+DC population induced by hetIL-15 may be targeted for the development of additional cancer immunotherapy approaches.


Assuntos
Antineoplásicos , Neoplasias , Camundongos , Animais , Cadeias alfa de Integrinas/metabolismo , Neoplasias/metabolismo , Citocinas/metabolismo , Células Dendríticas/metabolismo , Linfócitos/metabolismo , Antineoplásicos/metabolismo , Fatores Imunológicos/metabolismo , Camundongos Endogâmicos C57BL , Microambiente Tumoral
3.
iScience ; 26(2): 105929, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36685042

RESUMO

We employed a dose-escalation regimen in rhesus macaques to deliver glycosylated IL-7, a cytokine critical for development and maintenance of T lymphocytes. IL-7 increased proliferation and survival of T cells and triggered several chemokines and cytokines. Induction of CXCL13 in lymph nodes (LNs) led to a remarkable increase of B cells in the LNs, proliferation of germinal center follicular T helper cells and elevated IL-21 levels suggesting an increase in follicle activity. Transcriptomics analysis showed induction of IRF-7 and Flt3L, which was linked to increased frequency of circulating plasmacytoid dendritic cells (pDCs) on IL-7 treatment. These pDCs expressed higher levels of CCR7, homed to LNs, and were associated with upregulation of type-1 interferon gene signature and increased production of IFN-α2a on TLR stimulation. Superior effects and dose-sparing advantage was observed by the step-dose regimen. Thus, IL-7 treatment leads to systemic effects involving both lymphoid and myeloid compartments.

4.
Front Immunol ; 13: 945706, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935984

RESUMO

Immunogenicity of HIV-1 mRNA vaccine regimens was analyzed in a non-human primate animal model. Rhesus macaques immunized with mRNA in lipid nanoparticle (mRNA/LNP) formulation expressing HIV-1 Gag and Gag conserved regions (CE) as immunogens developed robust, durable antibody responses but low adaptive T-cell responses. Augmentation of the dose resulted in modest increases in vaccine-induced cellular immunity, with no difference in humoral responses. The gag mRNA/lipid nanoparticle (LNP) vaccine provided suboptimal priming of T cell responses for a heterologous DNA booster vaccination regimen. In contrast, a single immunization with gag mRNA/LNP efficiently boosted both humoral and cellular responses in macaques previously primed by a gag DNA-based vaccine. These anamnestic cellular responses were mediated by activated CD8+ T cells with a phenotype of differentiated T-bet+ cytotoxic memory T lymphocytes. The heterologous prime/boost regimens combining DNA and mRNA/LNP vaccine modalities maximized vaccine-induced cellular and humoral immune responses. Analysis of cytokine responses revealed a transient systemic signature characterized by the release of type I interferon, IL-15 and IFN-related chemokines. The pro-inflammatory status induced by the mRNA/LNP vaccine was also characterized by IL-23 and IL-6, concomitant with the release of IL-17 family of cytokines. Overall, the strong boost of cellular and humoral immunity induced by the mRNA/LNP vaccine suggests that it could be useful as a prophylactic vaccine in heterologous prime/boost modality and in immune therapeutic interventions against HIV infection or other chronic human diseases.


Assuntos
Vacinas contra a AIDS , Infecções por HIV , HIV-1 , Vacinas de DNA , Animais , Linfócitos T CD8-Positivos , Infecções por HIV/prevenção & controle , Lipossomos , Macaca mulatta , Nanopartículas , RNA Mensageiro/genética , Vacinas Sintéticas , Vacinas de mRNA
5.
Front Immunol ; 13: 899972, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693807

RESUMO

Immunocompromised individuals including patients with hematological malignancies constitute a population at high risk of developing severe disease upon SARS-CoV-2 infection. Protection afforded by vaccination is frequently low and the biology leading to altered vaccine efficacy is not fully understood. A patient cohort who had received bone marrow transplantation or CAR-T cells was studied following a 2-dose BNT162b2 mRNA vaccination and compared to healthy vaccine recipients. Anti-Spike antibody and systemic innate responses were compared in the two vaccine cohorts. The patients had significantly lower SARS-CoV-2 Spike antibodies to the Wuhan strain, with proportional lower cross-recognition of Beta, Delta, and Omicron Spike-RBD proteins. Both cohorts neutralized the wildtype WA1 and Delta but not Omicron. Vaccination elicited an innate cytokine signature featuring IFN-γ, IL-15 and IP-10/CXCL10, but most patients showed a diminished systemic cytokine response. In patients who failed to develop antibodies, the innate systemic response was dominated by IL-8 and MIP-1α with significant attenuation in the IFN-γ, IL-15 and IP-10/CXCL10 signature response. Changes in IFN-γ and IP-10/CXCL10 at priming vaccination and IFN-γ, IL-15, IL-7 and IL-10 upon booster vaccination correlated with the Spike antibody magnitude and were predictive of successful antibody development. Overall, the patients showed heterogeneous adaptive and innate responses with lower humoral and reduced innate cytokine responses to vaccination compared to naïve vaccine recipients. The pattern of responses described offer novel prognostic approaches for potentiating the effectiveness of COVID-19 vaccination in transplant patients with hematological malignancies.


Assuntos
COVID-19 , Neoplasias Hematológicas , Vacinas Virais , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Quimiocina CXCL10 , Citocinas , Neoplasias Hematológicas/terapia , Humanos , Interleucina-15 , RNA Mensageiro , SARS-CoV-2
6.
Parasitologia ; 2(2): 147-159, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36872919

RESUMO

The human parasite Entamoeba histolytica, which causes approximately 100 million cases of amoebic dysentery each year, relies on glycolysis as the major source of ATP production from glucose as it lacks a citric acid cycle and oxidative phosphorylation. Ethanol and acetate, the two major glycolytic end products for E. histolytica, are produced at a ratio of 2:1 under anaerobic conditions, creating an imbalance between NADH production and utilization. In this study we investigated the role of acetate kinase (ACK) in acetate production during glycolysis in E. histolytica metabolism. Analysis of intracellular and extracellular metabolites demonstrated that acetate levels were unaffected in an ACK RNAi cell line, but acetyl-CoA levels and the NAD+/NADH ratio were significantly elevated. Moreover, we demonstrated that glyceraldehyde 3-phosphate dehydrogenase catalyzes the ACK-dependent conversion of acetaldehyde to acetyl phosphate in E. histolytica. We propose that ACK is not a major contributor to acetate production, but instead provides a mechanism for maintaining the NAD+/NADH balance during ethanol production in the extended glycolytic pathway.

7.
Cell Rep ; 36(6): 109504, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34352226

RESUMO

Early responses to vaccination are important for shaping both humoral and cellular protective immunity. Dissecting innate vaccine signatures may predict immunogenicity to help optimize the efficacy of mRNA and other vaccine strategies. Here, we characterize the cytokine and chemokine responses to the 1st and 2nd dose of the BNT162b2 mRNA (Pfizer/BioNtech) vaccine in antigen-naive and in previously coronavirus disease 2019 (COVID-19)-infected individuals (NCT04743388). Transient increases in interleukin-15 (IL-15) and interferon gamma (IFN-γ) levels early after boost correlate with Spike antibody levels, supporting their use as biomarkers of effective humoral immunity development in response to vaccination. We identify a systemic signature including increases in IL-15, IFN-γ, and IP-10/CXCL10 after the 1st vaccination, which were enriched by tumor necrosis factor alpha (TNF-α) and IL-6 after the 2nd vaccination. In previously COVID-19-infected individuals, a single vaccination results in both strong cytokine induction and antibody titers similar to the ones observed upon booster vaccination in antigen-naive individuals, a result with potential implication for future public health recommendations.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Quimiocina CXCL10/imunologia , Interferon gama/imunologia , Interleucina-15/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , Anticorpos Antivirais/imunologia , Vacina BNT162 , COVID-19/metabolismo , Vacinas contra COVID-19/administração & dosagem , Feminino , Humanos , Imunidade/imunologia , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/imunologia
8.
Cancer Lett ; 499: 279-289, 2021 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-33232788

RESUMO

Analyzing immunomodulatory elements operating during antitumor vaccination in prostate cancer patients and murine models we identified IL-10-producing DC as a subset with poorer immunogenicity and clinical efficacy. Inhibitory TAM receptors MER and AXL were upregulated on murine IL-10+ DC. Thus, we analyzed conditions inducing these molecules and the potential benefit of their blockade during vaccination. MER and AXL upregulation was more efficiently induced by a vaccine containing Imiquimod than by a poly(I:C)-containing vaccine. Interestingly, MER expression was found on monocyte-derived DC, and was dependent on IL-10. TAM blockade improved Imiquimod-induced DC activation in vitro and in vivo, resulting in increased vaccine-induced T-cell responses, which were further reinforced by concomitant IL-10 inhibition. In different tumor models, a triple therapy (including vaccination, TAM inhibition and IL-10 blockade) provided the strongest therapeutic effect, associated with enhanced T-cell immunity and enhanced CD8+ T cell tumor infiltration. Finally, MER levels in DC used for vaccination in cancer patients correlated with IL-10 expression, showing an inverse association with vaccine-induced clinical response. These results suggest that TAM receptors upregulated during vaccination may constitute an additional target in combinatorial therapeutic vaccination strategies.


Assuntos
Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Imunoterapia/métodos , Melanoma Experimental/terapia , Neoplasias da Próstata/terapia , Adjuvantes Imunológicos/administração & dosagem , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Vacinas Anticâncer/administração & dosagem , Linhagem Celular Tumoral , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Imiquimode/administração & dosagem , Imunogenicidade da Vacina/efeitos dos fármacos , Interleucina-10/metabolismo , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Masculino , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Camundongos Transgênicos , Poli I-C/administração & dosagem , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Pirimidinas , Quinolinas , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/imunologia , c-Mer Tirosina Quinase/antagonistas & inibidores , c-Mer Tirosina Quinase/genética , Receptor Tirosina Quinase Axl
9.
J Virol Methods ; 288: 114011, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33152409

RESUMO

Influenza viruses are among the most significant pathogens of humans and animals. Reverse genetics allows for the study of molecular attributes that modulate virus host range, virulence and transmission. The most common reverse genetics methods use bi-directional vectors containing a host RNA polymerase (pol) I promoter to produce virus-like RNAs and a host RNA pol II promoter to direct the synthesis of viral proteins. Given the species-dependency of the pol I promoter and virus-host interactions that influence replication of animal-origin influenza viruses in human-derived cells, we explored the potential of using the swine RNA pol I promoter (spol1) in a bi-directional vector for rescuing type A and B influenza viruses (IAV and IBV, respectively) in swine and human cells. The spol1-based bi-directional plasmid vector led to efficient rescue of IAVs of different origins (human, swine, and avian) as well as IBV in both swine- and human-origin tissue culture cells. In addition, virus rescue was successful using a recombinant bacmid containing all eight segments of a swine origin IAV. In conclusion, the spol1-based reverse genetics system is a new platform to study influenza viruses and produce swine influenza vaccines with increased transfection efficiency.


Assuntos
Herpesvirus Cercopitecino 1 , Vacinas contra Influenza , Influenza Humana , Orthomyxoviridae , Animais , Humanos , Influenza Humana/prevenção & controle , Orthomyxoviridae/genética , RNA Polimerase I/genética , Genética Reversa , Suínos
10.
Cell ; 181(7): 1502-1517.e23, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32559462

RESUMO

RNA viruses are a major human health threat. The life cycles of many highly pathogenic RNA viruses like influenza A virus (IAV) and Lassa virus depends on host mRNA, because viral polymerases cleave 5'-m7G-capped host transcripts to prime viral mRNA synthesis ("cap-snatching"). We hypothesized that start codons within cap-snatched host transcripts could generate chimeric human-viral mRNAs with coding potential. We report the existence of this mechanism of gene origination, which we named "start-snatching." Depending on the reading frame, start-snatching allows the translation of host and viral "untranslated regions" (UTRs) to create N-terminally extended viral proteins or entirely novel polypeptides by genetic overprinting. We show that both types of chimeric proteins are made in IAV-infected cells, generate T cell responses, and contribute to virulence. Our results indicate that during infection with IAV, and likely a multitude of other human, animal and plant viruses, a host-dependent mechanism allows the genesis of hybrid genes.


Assuntos
Capuzes de RNA/genética , Infecções por Vírus de RNA/genética , Proteínas Recombinantes de Fusão/genética , Regiões 5' não Traduzidas/genética , Animais , Bovinos , Linhagem Celular , Cricetinae , Cães , Humanos , Vírus da Influenza A/metabolismo , Camundongos , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/metabolismo , Fases de Leitura Aberta/genética , Capuzes de RNA/metabolismo , Infecções por Vírus de RNA/metabolismo , Vírus de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Transcrição Gênica/genética , Proteínas Virais/metabolismo , Replicação Viral/genética
11.
mBio ; 10(2)2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940704

RESUMO

Human antibody-based immunity to influenza A virus is limited by antigenic drift resulting from amino acid substitutions in the hemagglutinin (HA) head domain. Glycan addition can cause large antigenic changes but is limited by fitness costs to viral replication. Here, we report that glycans are added to H1 and H3 HAs at discrete 5-to-7-year intervals, until they reach a functional glycan limit, after which glycans are swapped at approximately 2-fold-longer intervals. Consistent with this pattern, 2009 pandemic H1N1 added a glycan at residue N162 over the 2015-2016 season, an addition that required two epistatic HA head mutations for complete glycosylation. These strains rapidly replaced H1N1 strains globally, by 2017 dominating H3N2 and influenza B virus strains for the season. The pattern of glycan modulation that we outline should aid efforts for tracing the epidemic potential of evolving human IAV strains.IMPORTANCE Frequent mutation of its major antibody target, the glycoprotein hemagglutinin, ensures that the influenza virus is perennially both a rapidly emerging virus and a major threat to public health. One type of mutation escapes immunity by adding a glycan onto an area of hemagglutinin that many antibodies recognize. This study revealed that these glycan changes follow a simple temporal pattern. Every 5 to 7 years, hemagglutinin adds a new glycan, up to a limit. After this limit is reached, no net additions of glycans occur. Instead, glycans are swapped or lost at longer intervals. Eventually, a pandemic replaces the terminally glycosylated hemagglutinin with a minimally glycosylated one from the animal reservoir, restarting the cycle. This pattern suggests the following: (i) some hemagglutinins are evolved for this decades-long process, which is both defined by and limited by successive glycan addition; and (ii) hemagglutinin's antibody dominance and its capacity for mutations are highly adapted features that allow influenza to outpace our antibody-based immunity.


Assuntos
Evolução Molecular , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A/química , Polissacarídeos/metabolismo , Processamento de Proteína Pós-Traducional , Glicosilação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A/genética , Mutação
12.
Mol Cell ; 73(6): 1162-1173.e5, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30712990

RESUMO

The MHC class I antigen presentation system enables T cell immunosurveillance of cancers and viruses. A substantial fraction of the immunopeptidome derives from rapidly degraded nascent polypeptides (DRiPs). By knocking down each of the 80 ribosomal proteins, we identified proteins that modulate peptide generation without altering source protein expression. We show that 60S ribosomal proteins L6 (RPL6) and RPL28, which are adjacent on the ribosome, play opposite roles in generating an influenza A virus-encoded peptide. Depleting RPL6 decreases ubiquitin-dependent peptide presentation, whereas depleting RPL28 increases ubiquitin-dependent and -independent peptide presentation. 40S ribosomal protein S28 (RPS28) knockdown increases total peptide supply in uninfected cells by increasing DRiP synthesis from non-canonical translation of "untranslated" regions and non-AUG start codons and sensitizes tumor cells for T cell targeting. Our findings raise the possibility of modulating immunosurveillance by pharmaceutical targeting ribosomes.


Assuntos
Apresentação de Antígeno , Antígenos de Histocompatibilidade Classe I/biossíntese , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Linfócitos T/metabolismo , Animais , Linhagem Celular Tumoral , Técnicas de Cocultura , Células HEK293 , Antígenos de Histocompatibilidade Classe I/imunologia , Interações Hospedeiro-Patógeno , Humanos , Vigilância Imunológica , Vírus da Influenza A/imunologia , Vírus da Influenza A/patogenicidade , Melanoma/imunologia , Melanoma/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Maiores de Eucariotos/genética , Subunidades Ribossômicas Menores de Eucariotos/genética , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/metabolismo , Linfócitos T/imunologia , Linfócitos T/virologia
13.
J Exp Med ; 216(2): 304-316, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30683737

RESUMO

Broadly neutralizing antibodies (Abs) that bind the influenza virus hemagglutinin (HA) stem may enable universal influenza vaccination. Here, we show that anti-stem Abs sterically inhibit viral neuraminidase (NA) activity against large substrates, with activity inversely proportional to the length of the fibrous NA stalk that supports the enzymatic domain. By modulating NA stalk length in recombinant IAVs, we show that anti-stem Abs inhibit virus release from infected cells by blocking NA, accounting for their in vitro neutralization activity. NA inhibition contributes to anti-stem Ab protection in influenza-infected mice, likely due at least in part to NA-mediated inhibition of FcγR-dependent activation of innate immune cells by Ab bound to virions. Food and Drug Administration-approved NA inhibitors enhance anti-stem-based Fc-dependent immune cell activation, raising the possibility of therapeutic synergy between NA inhibitors and anti-stem mAb treatment in humans.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A , Neuraminidase , Infecções por Orthomyxoviridae , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/farmacologia , Cães , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Imunidade Inata/efeitos dos fármacos , Vírus da Influenza A/enzimologia , Vírus da Influenza A/imunologia , Células Madin Darby de Rim Canino , Camundongos , Neuraminidase/antagonistas & inibidores , Neuraminidase/imunologia , Neuraminidase/metabolismo , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/enzimologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/patologia , Domínios Proteicos , Receptores de IgG/imunologia , Receptores de IgG/metabolismo
15.
PLoS Pathog ; 14(1): e1006796, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29346435

RESUMO

Rapid antigenic evolution enables the persistence of seasonal influenza A and B viruses in human populations despite widespread herd immunity. Understanding viral mechanisms that enable antigenic evolution is critical for designing durable vaccines and therapeutics. Here, we utilize the primerID method of error-correcting viral population sequencing to reveal an unexpected role for hemagglutinin (HA) glycosylation in compensating for fitness defects resulting from escape from anti-HA neutralizing antibodies. Antibody-free propagation following antigenic escape rapidly selected viruses with mutations that modulated receptor binding avidity through the addition of N-linked glycans to the HA globular domain. These findings expand our understanding of the viral mechanisms that maintain fitness during antigenic evolution to include glycan addition, and highlight the immense power of high-definition virus population sequencing to reveal novel viral adaptive mechanisms.


Assuntos
Anticorpos Antivirais/imunologia , Variação Antigênica , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Evasão da Resposta Imune , Animais , Anticorpos Antivirais/metabolismo , Variação Antigênica/genética , Cães , Aptidão Genética , Glicosilação , Células HEK293 , Humanos , Evasão da Resposta Imune/genética , Evasão da Resposta Imune/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N1/metabolismo , Vacinas contra Influenza/imunologia , Células Madin Darby de Rim Canino , Processamento de Proteína Pós-Traducional/fisiologia
16.
Methods Mol Biol ; 1602: 251-273, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28508225

RESUMO

Influenza A viruses have broad host range with a recognized natural reservoir in wild aquatic birds. From this reservoir, novel strains occasionally emerge with the potential to establish stable lineages in other avian and mammalian species, including humans. Understanding the molecular changes that allow influenza A viruses to change host range is essential to better assess their animal and public health risks. Reverse genetics systems have transformed the ability to manipulate and study negative strand RNA viruses. In the particular case of influenza A viruses, plasmid-based reverse genetics approaches have allowed for a better understanding of, among others, virulence, transmission, mechanisms of antiviral resistance, and the development of alternative vaccines and vaccination strategies. In this chapter we describe the cloning of cDNA copies of viral RNA segments derived from a type A influenza virus into reverse genetics plasmid vectors and the experimental procedures for the successful generation of recombinant influenza A viruses.


Assuntos
Vírus da Influenza A/genética , Plasmídeos/genética , Genética Reversa , Animais , Linhagem Celular , Clonagem Molecular , DNA Complementar , Expressão Gênica , Vetores Genéticos/genética , Genoma Viral , Humanos , RNA Viral , Recombinação Genética , Genética Reversa/métodos , Transfecção , Replicação Viral
17.
Nat Immunol ; 18(4): 456-463, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28192417

RESUMO

Immunodominance (ID) defines the hierarchical immune response to competing antigens in complex immunogens. Little is known regarding B cell and antibody ID despite its importance in immunity to viruses and other pathogens. We show that B cells and serum antibodies from inbred mice demonstrate a reproducible ID hierarchy to the five major antigenic sites in the influenza A virus hemagglutinin globular domain. The hierarchy changed as the immune response progressed, and it was dependent on antigen formulation and delivery. Passive antibody transfer and sequential infection experiments demonstrated 'original antigenic suppression', a phenomenon in which antibodies suppress memory responses to the priming antigenic site. Our study provides a template for attaining deeper understanding of antibody ID to viruses and other complex immunogens.


Assuntos
Linfócitos B/imunologia , Linfócitos B/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Epitopos Imunodominantes/imunologia , Viroses/imunologia , Vírus/imunologia , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Antígenos Virais/química , Antígenos Virais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Patrimônio Genético , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Interações Hospedeiro-Patógeno/genética , Imunização , Epitopos Imunodominantes/química , Memória Imunológica , Vírus da Influenza A/imunologia , Linfonodos/imunologia , Camundongos , Modelos Moleculares , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/imunologia , Conformação Proteica , Viroses/genética , Viroses/virologia
18.
J Virol ; 88(17): 10013-25, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24942589

RESUMO

UNLABELLED: Vaccination is the first line of defense against influenza virus infection, yet influenza vaccine production methods are slow, antiquated, and expensive as a means to effectively reduce the virus burden during epidemic or pandemic periods. There is a great need for alternative influenza vaccines and vaccination methods with a global scale of impact. We demonstrate here a strategy to generate influenza A virus in vivo by using bacmid DNAs. Compared to the classical reverse genetics system, the "eight-in-one" bacmids (bcmd-RGFlu) showed higher efficiency of virus rescue in various cell types. Using a transfection-based inoculation (TBI) system, intranasal delivery to DBA/2J and BALB/c mice of bcmd-RGFlu plus 293T cells led to the generation of lethal PR8 virus in vivo. A prime-boost intranasal vaccination strategy using TBI in the context of a bcmd-RGFlu carrying a temperature-sensitive H1N1 virus resulted in protection of mice against lethal challenge with the PR8 strain. Taken together, these studies provide proof of principle to highlight the potential of vaccination against influenza virus by using in vivo reverse genetics. IMPORTANCE: Vaccination is the first line of defense against influenza virus infections. A major drawback in the preparation of influenza vaccines is that production relies on a heavily time-consuming process of growing the viruses in eggs. We propose a radical change in the way influenza vaccination is approached, in which a recombinant bacmid, a shuttle vector that can be propagated in both Escherichia coli and insect cells, carries an influenza virus infectious clone (bcmd-RGFlu). Using a surrogate cell system, we found that intranasal delivery of bcmd-RGFlu resulted in generation of influenza virus in mice. Furthermore, mice vaccinated with this system were protected against lethal influenza virus challenge. The study serves as a proof of principle of a potentially universal vaccine platform against influenza virus and other pathogens.


Assuntos
Vetores Genéticos , Vírus da Influenza A/genética , Vacinas contra Influenza/genética , Vacinas contra Influenza/isolamento & purificação , Genética Reversa/métodos , Administração Intranasal , Animais , Modelos Animais de Doenças , Vírus da Influenza A/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos DBA , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle
19.
J Virol ; 88(12): 6623-35, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24696487

RESUMO

UNLABELLED: Avian H7 influenza viruses are recognized as potential pandemic viruses, as personnel often become infected during poultry outbreaks. H7 infections in humans typically cause mild conjunctivitis; however, the H7N9 outbreak in the spring of 2013 has resulted in severe respiratory disease. To date, no H7 viruses have acquired the ability for sustained transmission among humans. Airborne transmission is considered a requirement for the emergence of pandemic influenza, and advanced knowledge of the molecular changes or signature required for transmission would allow early identification of pandemic vaccine seed stocks, screening and stockpiling of antiviral compounds, and eradication efforts focused on flocks harboring threatening viruses. Thus, we sought to determine if a highly pathogenic influenza A H7N1 (A/H7N1) virus with no history of human infection could become capable of airborne transmission among ferrets. We show that after 10 serial passages, A/H7N1 developed the ability to be transmitted to cohoused and airborne contact ferrets. Four amino acid mutations (PB2 T81I, NP V284M, and M1 R95K and Q211K) in the internal genes and a minimal amino acid mutation (K/R313R) in the stalk region of the hemagglutinin protein were associated with airborne transmission. Furthermore, transmission was not associated with loss of virulence. These findings highlight the importance of the internal genes in host adaptation and suggest that natural isolates carrying these mutations be further evaluated. Our results demonstrate that a highly pathogenic avian H7 virus can become capable of airborne transmission in a mammalian host, and they support ongoing surveillance and pandemic H7 vaccine development. IMPORTANCE: The major findings of this report are that a highly pathogenic strain of H7N1 avian influenza virus can be adapted to become capable of airborne transmission in mammals without mutations altering receptor specificity. Changes in receptor specificity have been shown to play a role in the ability of avian influenza viruses to cross the species barrier, and these changes are assumed to be essential. The work reported here challenges this paradigm, at least for the influenza viruses of the H7 subtype, which have recently become the focus of major attention, as they have crossed to humans.


Assuntos
Microbiologia do Ar , Vírus da Influenza A Subtipo H7N1/fisiologia , Influenza Humana/transmissão , Influenza Humana/virologia , Adaptação Fisiológica , Animais , Modelos Animais de Doenças , Feminino , Furões , Humanos , Vírus da Influenza A Subtipo H7N1/genética , Vírus da Influenza A Subtipo H7N1/patogenicidade , Inoculações Seriadas , Virulência
20.
J Virol ; 88(1): 66-71, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24131710

RESUMO

Influenza A H9N2 viruses are common poultry pathogens that occasionally infect swine and humans. It has been shown previously with H9N2 viruses that reassortment can generate novel viruses with increased transmissibility. Here, we demonstrate the modeling power of a novel transfection-based inoculation system to select reassortant viruses under in vivo selective pressure. Plasmids containing the genes from an H9N2 virus and a pandemic H1N1 (pH1N1) virus were transfected into HEK 293T cells to potentially generate the full panel of possible H9 reassortants. These cells were then used to inoculate ferrets, and the population dynamics were studied. Two respiratory-droplet-transmissible H9N1 viruses were selected by this method, indicating a selective pressure in ferrets for the novel combination of surface genes. These results show that a transfection-based inoculation system is a fast and efficient method to model reassortment and highlight the risk of reassortment between H9N2 and pH1N1 viruses.


Assuntos
Modelos Animais de Doenças , Vírus da Influenza A/genética , Infecções por Orthomyxoviridae/transmissão , Vírus Reordenados/genética , Animais , Feminino , Furões , Células HEK293 , Humanos , Infecções por Orthomyxoviridae/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA