Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Microbiol ; 119(4): 515-533, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36786209

RESUMO

Satellite viruses are present across all domains of life, defined as subviral parasites that require infection by another virus for satellite progeny production. Phage satellites exhibit various regulatory mechanisms to manipulate phage gene expression to the benefit of the satellite, redirecting resources from the phage to the satellite, and often inhibiting phage progeny production. While small RNAs (sRNAs) are well documented as regulators of prokaryotic gene expression, they have not been shown to play a regulatory role in satellite-phage conflicts. Vibrio cholerae encodes the phage inducible chromosomal island-like element (PLE), a phage satellite, to defend itself against the lytic phage ICP1. Here, we use Hi-GRIL-seq to identify a complex RNA-RNA interactome between PLE and ICP1. Both inter- and intragenome RNA interactions were detected, headlined by the PLE sRNA, SviR. SviR is involved in regulating both PLE and ICP1 gene expression uniquely, decreasing ICP1 target translation and affecting PLE transcripts. The striking conservation of SviR across all known PLEs suggests the sRNA is deeply rooted in the PLE-ICP1 conflict and implicates sRNAs as unidentified regulators of gene expression in phage-satellite interactions.


Assuntos
Bacteriófagos , Pequeno RNA não Traduzido , Vibrio cholerae , Bacteriófagos/metabolismo , Vibrio cholerae/genética , Vírus Satélites/genética , Expressão Gênica , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo
2.
Emerg Infect Dis ; 28(12): 2482-2490, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36417939

RESUMO

Cholera causes substantial illness and death in Africa. We analyzed 24 toxigenic Vibrio cholerae O1 strains isolated in 2015-2017 from patients in the Great Lakes region of the Democratic Republic of the Congo. Strains originating in southern Asia appeared to be part of the T10 introduction event in eastern Africa. We identified 2 main strain lineages, most recently a lineage corresponding to sequence type 515, a V. cholerae cluster previously reported in the Lake Kivu region. In 41% of fecal samples from cholera patients, we also identified a novel ICP1 (Bangladesh cholera phage 1) bacteriophage, genetically distinct from ICP1 isolates previously detected in Asia. Bacteriophage resistance occurred in distinct clades along both internal and external branches of the cholera phylogeny. This bacteriophage appears to have served as a major driver for cholera evolution and spread, and its appearance highlights the complex evolutionary dynamic that occurs between predatory phage and bacterial host.


Assuntos
Bacteriófagos , Cólera , Vibrio cholerae O1 , Humanos , Cólera/epidemiologia , Cólera/microbiologia , Bacteriófagos/genética , República Democrática do Congo/epidemiologia , Filogenia
3.
Nucleic Acids Res ; 50(19): 11138-11153, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36259649

RESUMO

Bacteria can acquire mobile genetic elements (MGEs) to combat infection by viruses (phages). Satellite viruses, including the PLEs (phage-inducible chromosomal island-like elements) in epidemic Vibrio cholerae, are MGEs that restrict phage replication to the benefit of their host bacterium. PLEs parasitize the lytic phage ICP1, unleashing multiple mechanisms to restrict phage replication and promote their own spread. In the arms race against PLE, ICP1 uses nucleases, including CRISPR-Cas, to destroy PLE's genome during infection. However, through an unknown CRISPR-independent mechanism, specific ICP1 isolates subvert restriction by PLE. Here, we discover ICP1-encoded Adi that counteracts PLE by exploiting the PLE's large serine recombinase (LSR), which normally mobilizes PLE in response to ICP1 infection. Unlike previously characterized ICP1-encoded anti-PLE mechanisms, Adi is not a nuclease itself but instead appears to modulate the activity of the LSR to promote destructive nuclease activity at the LSR's specific attachment site, attP. The PLE LSR, its catalytic activity, and attP are additionally sufficient to sensitize a PLE encoding a resistant variant of the recombination module to Adi activity. This work highlights a unique type of adaptation arising from inter-genome conflicts, in which the intended activity of a protein can be weaponized to overcome the antagonizing genome.


Assuntos
Bacteriófagos , Vibrio cholerae , Bacteriófagos/metabolismo , Recombinases/genética , Recombinases/metabolismo , Vibrio cholerae/metabolismo , Sistemas CRISPR-Cas
4.
Science ; 373(6554)2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34326207

RESUMO

Bacteriophage predation selects for diverse antiphage systems that frequently cluster on mobilizable defense islands in bacterial genomes. However, molecular insight into the reciprocal dynamics of phage-bacterial adaptations in nature is lacking, particularly in clinical contexts where there is need to inform phage therapy efforts and to understand how phages drive pathogen evolution. Using time-shift experiments, we uncovered fluctuations in Vibrio cholerae's resistance to phages in clinical samples. We mapped phage resistance determinants to SXT integrative and conjugative elements (ICEs), which notoriously also confer antibiotic resistance. We found that SXT ICEs, which are widespread in γ-proteobacteria, invariably encode phage defense systems localized to a single hotspot of genetic exchange. We identified mechanisms that allow phage to counter SXT-mediated defense in clinical samples, and document the selection of a novel phage-encoded defense inhibitor. Phage infection stimulates high-frequency SXT ICE conjugation, leading to the concurrent dissemination of phage and antibiotic resistances.


Assuntos
Farmacorresistência Bacteriana/genética , Sequências Repetitivas Dispersas , Myoviridae/fisiologia , Vibrio cholerae/efeitos dos fármacos , Vibrio cholerae/virologia , Bacteriólise , Cólera/microbiologia , Conjugação Genética , Epigênese Genética , Fezes/microbiologia , Fezes/virologia , Gammaproteobacteria/genética , Gammaproteobacteria/virologia , Genes Bacterianos , Genes Virais , Genoma Bacteriano , Genoma Viral , Especificidade de Hospedeiro , Humanos , Interações Microbianas , Myoviridae/genética , Myoviridae/isolamento & purificação , Vibrio cholerae/genética , Vibrio cholerae/isolamento & purificação , Proteínas Virais/genética , Proteínas Virais/metabolismo
5.
Annu Rev Virol ; 8(1): 285-304, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34314595

RESUMO

Bacteriophages or phages-viruses of bacteria-are abundant and considered to be highly diverse. Interestingly, a particular group of lytic Vibrio cholerae-specific phages (vibriophages) of the International Centre for Diarrheal Disease Research, Bangladesh cholera phage 1 (ICP1) lineage show high levels of genome conservation over large spans of time and geography, despite a constant coevolutionary arms race with their host. From a collection of 67 sequenced ICP1 isolates, mostly from clinical samples, we find these phages have mosaic genomes consisting of large, conserved modules disrupted by variable sequences that likely evolve mostly through mobile endonuclease-mediated recombination during coinfection. Several variable regions have been associated with adaptations against antiphage elements in V. cholerae; notably, this includes ICP1's CRISPR-Cas system. The ongoing association of ICP1 and V. cholerae in cholera-endemic regions makes this system a rich source for discovery of novel defense and counterdefense strategies in bacteria-phage conflicts in nature.


Assuntos
Bacteriófagos , Cólera , Vibrio cholerae , Sistemas CRISPR-Cas , Cólera/genética , Humanos , Vibrio cholerae/genética
6.
mBio ; 13(1): e0308821, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35164562

RESUMO

Vibrio cholerae is a significant threat to global public health in part due to its propensity for large-scale evolutionary sweeps where lineages emerge and are replaced. These sweeps may originate from the Bay of Bengal, where bacteriophage predation and the evolution of antiphage counterdefenses is a recurring theme. The bacteriophage ICP1 is a key predator of epidemic V. cholerae and is notable for acquiring a CRISPR-Cas system to combat PLE, a defensive subviral parasite encoded by its V. cholerae host. Here, we describe the discovery of four previously unknown PLE variants through a retrospective analysis of >3,000 publicly available sequences as well as one additional variant (PLE10) from recent surveillance of cholera patients in Bangladesh. In recent sampling we also observed a lineage sweep of PLE-negative V. cholerae occurring within the patient population in under a year. This shift coincided with a loss of ICP1's CRISPR-Cas system in favor of a previously prevalent PLE-targeting endonuclease called Odn. Interestingly, PLE10 was resistant to ICP1-encoded Odn, yet it was not found in any recent V. cholerae strains. We also identified isolates from within individual patient samples that revealed both mixed PLE(+)/PLE(-) V. cholerae populations and ICP1 strains possessing CRISPR-Cas or Odn with evidence of in situ recombination. These findings reinforce our understanding of the successive nature of V. cholerae evolution and suggest that ongoing surveillance of V. cholerae, ICP1, and PLE in Bangladesh is important for tracking genetic developments relevant to pandemic cholera that can occur over relatively short timescales. IMPORTANCE With 1 to 4 million estimated cases annually, cholera is a disease of serious global concern in regions where access to safe drinking water is limited by inadequate infrastructure, inequity, or natural disaster. The Global Task Force on Cholera Control (GTFCC.org) considers outbreak surveillance to be a primary pillar in the strategy to reduce mortality from cholera worldwide. Therefore, developing a better understanding of temporal evolutionary changes in the causative agent of cholera, Vibrio cholerae, could help in those efforts. The significance of our research is in tracking the genomic shifts that distinguish V. cholerae outbreaks, with specific attention paid to current and historical trends in the arms race between V. cholerae and a cooccurring viral (bacteriophage) predator. Here, we discover additional diversity of a specific phage defense system in epidemic V. cholerae and document the loss of a phage-encoded CRISPR-Cas system, underscoring the dynamic nature of microbial populations across cholera outbreaks.


Assuntos
Bacteriófagos , Cólera , Parasitos , Vibrio cholerae , Animais , Humanos , Cólera/epidemiologia , Sistemas CRISPR-Cas , Bacteriófagos/genética , Estudos Retrospectivos , Vibrio cholerae/genética
7.
mSystems ; 5(5)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33051375

RESUMO

Many viruses possess temporally unfolding gene expression patterns aimed at subverting host defenses, commandeering host metabolism, and ultimately producing a large number of progeny virions. High-throughput omics tools, such as RNA sequencing (RNA-seq), have dramatically enhanced the resolution of expression patterns during infection. Less studied have been viral satellites, mobile genomes that parasitize viruses. By performing RNA-seq on infection time courses, we have obtained the first time-resolved transcriptomes for bacteriophage satellites during lytic infection. Specifically, we have acquired transcriptomes for the lytic Vibrio cholerae phage ICP1 and all five known variants of ICP1's parasite, the phage inducible chromosomal island-like elements (PLEs). PLEs rely on ICP1 for both DNA replication and mobilization and abolish production of ICP1 progeny in infected cells. We investigated PLEs' impact on ICP1 gene expression and found that PLEs did not broadly restrict or reduce ICP1 gene expression. A major exception occurred in ICP1's capsid morphogenesis operon, which was downregulated by each of the PLE variants. Surprisingly, PLEs were also found to alter the gene expression of CTXΦ, the integrative phage that encodes cholera toxin and is necessary for virulence of toxigenic V. cholerae One PLE, PLE1, upregulated CTXΦ genes involved in replication and integration and boosted CTXΦ mobility following induction of the SOS response.IMPORTANCE Viral satellites are found in all domains of life and can have profound fitness effects on both the viruses they parasitize and the cells they reside in. In this study, we have acquired the first RNA sequencing (RNA-seq) transcriptomes of viral satellites outside plants, as well as the transcriptome of the phage ICP1, a predominant predator of pandemic Vibrio cholerae Capsid downregulation, previously observed in an unrelated phage satellite, is conserved among phage inducible chromosomal island-like elements (PLEs), suggesting that viral satellites are under strong selective pressure to reduce the capsid expression of their larger host viruses. Despite conserved manipulation of capsid expression, PLEs exhibit divergent effects on CTXΦ transcription and mobility. Our results demonstrate that PLEs can influence both their hosts' resistance to phage and the mobility of virulence-encoding elements, suggesting that PLEs can play a substantial role in shaping Vibrio cholerae evolution.

8.
Nucleic Acids Res ; 48(1): 249-263, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31667508

RESUMO

Phage-inducible chromosomal island-like elements (PLEs) are bacteriophage satellites found in Vibrio cholerae. PLEs parasitize the lytic phage ICP1, excising from the bacterial chromosome, replicating, and mobilizing to new host cells following cell lysis. PLEs protect their host cell populations by completely restricting the production of ICP1 progeny. Previously, it was found that ICP1 replication was reduced during PLE(+) infection. Despite robust replication of the PLE genome, relatively few transducing units are produced. We investigated if PLE DNA replication itself is antagonistic to ICP1 replication. Here we identify key constituents of PLE replication and assess their role in interference of ICP1. PLE encodes a RepA_N initiation factor that is sufficient to drive replication from the PLE origin of replication during ICP1 infection. In contrast to previously characterized bacteriophage satellites, expression of the PLE initiation factor was not sufficient for PLE replication in the absence of phage. Replication of PLE was necessary for interference of ICP1 DNA replication, but replication of a minimalized PLE replicon was not sufficient for ICP1 DNA replication interference. Despite restoration of ICP1 DNA replication, non-replicating PLE remained broadly inhibitory against ICP1. These results suggest that PLE DNA replication is one of multiple mechanisms contributing to ICP1 restriction.


Assuntos
Bacteriófagos/genética , DNA Helicases/genética , DNA Bacteriano/genética , Vibrio cholerae/genética , Replicação Viral/genética , Bacteriófagos/metabolismo , Cromossomos Bacterianos/química , Cromossomos Bacterianos/imunologia , Cromossomos Bacterianos/virologia , DNA Helicases/imunologia , Replicação do DNA , DNA Bacteriano/imunologia , Lisogenia/genética , Origem de Replicação , Vibrio cholerae/imunologia , Vibrio cholerae/virologia
9.
Philos Trans R Soc Lond B Biol Sci ; 374(1772): 20180089, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-30905288

RESUMO

CRISPR-Cas systems function as adaptive immune systems by acquiring nucleotide sequences called spacers that mediate sequence-specific defence against competitors. Uniquely, the phage ICP1 encodes a Type I-F CRISPR-Cas system that is deployed to target and overcome PLE, a mobile genetic element with anti-phage activity in Vibrio cholerae. Here, we exploit the arms race between ICP1 and PLE to examine spacer acquisition and interference under laboratory conditions to reconcile findings from wild populations. Natural ICP1 isolates encode multiple spacers directed against PLE, but we find that single spacers do not interfere equally with PLE mobilization. High-throughput sequencing to assay spacer acquisition reveals that ICP1 can also acquire spacers that target the V. cholerae chromosome. We find that targeting the V. cholerae chromosome proximal to PLE is sufficient to block PLE and is dependent on Cas2-3 helicase activity. We propose a model in which indirect chromosomal spacers are able to circumvent PLE by Cas2-3-mediated processive degradation of the V. cholerae chromosome before PLE mobilization. Generally, laboratory-acquired spacers are much more diverse than the subset of spacers maintained by ICP1 in nature, showing how evolutionary pressures can constrain CRISPR-Cas targeting in ways that are often not appreciated through in vitro analyses. This article is part of a discussion meeting issue 'The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems'.


Assuntos
Bacteriófagos/fisiologia , Sistemas CRISPR-Cas/genética , Vibrio cholerae/virologia , Bacteriófagos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Sequências Repetitivas Dispersas
10.
Viruses ; 10(6)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29857590

RESUMO

The Vibrio cholerae biotype "El Tor" is responsible for all of the current epidemic and endemic cholera outbreaks worldwide. These outbreaks are clonal, and it is hypothesized that they originate from the coastal areas near the Bay of Bengal, where the lytic bacteriophage ICP1 (International Centre for Diarrhoeal Disease Research, Bangladesh cholera phage 1) specifically preys upon these pathogenic outbreak strains. ICP1 has also been the dominant bacteriophage found in cholera patient stools since 2001. However, little is known about the genomic differences between the ICP1 strains that have been collected over time. Here, we elucidate the pan-genome and the phylogeny of the ICP1 strains by aligning, annotating, and analyzing the genomes of 19 distinct isolates that were collected between 2001 and 2012. Our results reveal that the ICP1 isolates are highly conserved and possess a large core-genome as well as a smaller, somewhat flexible accessory-genome. Despite its overall conservation, ICP1 strains have managed to acquire a number of unknown genes, as well as a CRISPR-Cas system which is known to be critical for its ongoing struggle for co-evolutionary dominance over its host. This study describes a foundation on which to construct future molecular and bioinformatic studies of these V. cholerae-associated bacteriophages.


Assuntos
Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Fezes/virologia , Genoma Viral , Vibrio cholerae O1/virologia , Microbiologia da Água , Bangladesh/epidemiologia , Sistemas CRISPR-Cas , Cólera/epidemiologia , Cólera/virologia , Fezes/microbiologia , Genes Bacterianos , Variação Genética , Humanos , Filogenia
11.
PeerJ ; 6: e4735, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29736349

RESUMO

Dispersal and environmental selection are two of the most important factors that govern the distributions of microbial communities in nature. While dispersal rates are often inferred by measuring the degree to which community similarity diminishes with increasing geographic distance, determining the extent to which environmental selection impacts the distribution of microbes is more complex. To address this knowledge gap, we performed a large reciprocal transplant experiment to simulate the dispersal of US East Coast salt marsh Spartina alterniflora rhizome-associated microbial sediment communities across a latitudinal gradient and determined if any shifts in microbial community composition occurred as a result of the transplantation. Using bacterial 16S rRNA gene sequencing, we did not observe large-scale changes in community composition over a five-month S. alterniflora summer growing season and found that transplanted communities more closely resembled their origin sites than their destination sites. Furthermore, transplanted communities grouped predominantly by region, with two sites from the north and three sites to the south hosting distinct bacterial taxa, suggesting that sediment communities transplanted from north to south tended to retain their northern microbial distributions, and south to north maintained a southern distribution. A small number of potential indicator 16S rRNA gene sequences had distributions that were strongly correlated to both temperature and nitrogen, indicating that some organisms are more sensitive to environmental factors than others. These results provide new insight into the microbial biogeography of salt marsh sediments and suggest that established bacterial communities in frequently-inundated environments may be both highly resistant to invasion and resilient to some environmental shifts. However, the extent to which environmental selection impacts these communities is taxon specific and variable, highlighting the complex interplay between dispersal and environmental selection for microbial communities in nature.

12.
Environ Microbiol ; 18(1): 75-86, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25727503

RESUMO

In many habitats, microorganisms exhibit significant distance-decay patterns as determined by analysis of the 16S rRNA gene and various other genetic elements. However, there have been few studies that examine how the similarities of both taxonomic and functional genes co-vary over geographic distance within a group of ecologically related microbes. Here, we determined the biogeographic patterns of the functional dissimilatory sulfite reductase gene (dsrA) and the 16S rRNA gene in sulfate-reducing bacterial communities of US East Coast salt marsh sediments. Distance-decay, ordination and statistical analyses revealed that the distribution of 16S rRNA genes is strongly influenced by geographic distance and environmental factors, whereas the dsrA gene is not. Together, our results indicate that 16S rRNA genes are likely dispersal limited and under environmental selection, whereas dsrA genes appear randomly distributed and not selected for by any expected environmental variables. Selection, drift, dispersal and mutation are all factors that may help explain the decoupled biogeographic patterns for the two genes. These data suggest that both the taxonomic and functional elements of microbial communities should be considered in future studies of microbial biogeography to aid in our understanding of the diversity, distribution and function of microorganisms in the environment.


Assuntos
Bactérias/genética , DNA Bacteriano/genética , Sulfito de Hidrogênio Redutase/genética , Microbiota/genética , RNA Ribossômico 16S/genética , Ecossistema , Filogenia , Cloreto de Sódio , Sulfatos/metabolismo , Áreas Alagadas
13.
Cell Host Microbe ; 18(3): 307-19, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26299432

RESUMO

Bacterial lineages that chronically infect cystic fibrosis (CF) patients genetically diversify during infection. However, the mechanisms driving diversification are unknown. By dissecting ten CF lung pairs and studying ∼12,000 regional isolates, we were able to investigate whether clonally related Pseudomonas aeruginosa inhabiting different lung regions evolve independently and differ functionally. Phylogenetic analysis of genome sequences showed that regional isolation of P. aeruginosa drives divergent evolution. We investigated the consequences of regional evolution by studying isolates from mildly and severely diseased lung regions and found evolved differences in bacterial nutritional requirements, host defense and antibiotic resistance, and virulence due to hyperactivity of the type 3 secretion system. These findings suggest that bacterial intermixing is limited in CF lungs and that regional selective pressures may markedly differ. The findings also may explain how specialized bacterial variants arise during infection and raise the possibility that pathogen diversification occurs in other chronic infections characterized by spatially heterogeneous conditions.


Assuntos
Fibrose Cística/complicações , Variação Genética , Pulmão/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/genética , Humanos , Dados de Sequência Molecular , Pseudomonas aeruginosa/isolamento & purificação , Análise de Sequência de DNA
14.
Am J Respir Crit Care Med ; 189(7): 812-24, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24467627

RESUMO

RATIONALE: Progress has been made in understanding how the cystic fibrosis (CF) basic defect produces lung infection susceptibility. However, it remains unclear why CF exclusively leads to chronic infections that are noninvasive and highly resistant to eradication. Although biofilm formation has been suggested as a mechanism, recent work raises questions about the role of biofilms in CF. OBJECTIVES: To learn how airway conditions attributed to CF transmembrane regulator dysfunction could lead to chronic infection, and to determine if biofilm-inhibiting genetic adaptations that are common in CF isolates affect the capacity of Pseudomonas aeruginosa to develop chronic infection phenotypes. METHODS: We studied P. aeruginosa isolates grown in agar and mucus gels containing sputum from patients with CF and measured their susceptibility to killing by antibiotics and host defenses. We also measured the invasive virulence of P. aeruginosa grown in sputum gels using airway epithelial cells and a murine infection model. MEASUREMENTS AND MAIN RESULTS: We found that conditions likely to result from increased mucus density, hyperinflammation, and defective bacterial killing could all cause P. aeruginosa to grow in bacterial aggregates. Aggregated growth markedly increased the resistance of bacteria to killing by host defenses and antibiotics, and reduced their invasiveness. In addition, we found that biofilm-inhibiting mutations do not impede aggregate formation in gel growth environments. CONCLUSIONS: Our findings suggest that conditions associated with several CF pathogenesis hypotheses could cause the noninvasive and resistant infection phenotype, independently of the bacterial functions needed for biofilm formation.


Assuntos
Fibrose Cística/microbiologia , Infecções por Pseudomonas/etiologia , Pseudomonas aeruginosa/patogenicidade , Animais , Biofilmes , Biomarcadores/metabolismo , Doença Crônica , Fibrose Cística/complicações , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Farmacorresistência Bacteriana , Marcadores Genéticos , Humanos , Elastase de Leucócito/metabolismo , Camundongos , Testes de Sensibilidade Microbiana , Fenótipo , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/isolamento & purificação , Pseudomonas aeruginosa/fisiologia , Escarro/metabolismo , Escarro/microbiologia , Virulência
15.
Proc Natl Acad Sci U S A ; 106(34): 14570-5, 2009 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-19706543

RESUMO

This report describes the identification and analysis of a 2-component regulator of Pseudomonas aeruginosa that is a potential aminoglycoside antibiotic combination therapy target. The regulator, AmgRS, was identified in a screen of a comprehensive, defined transposon mutant library for functions whose inactivation increased tobramycin sensitivity. AmgRS mutations enhanced aminoglycoside action against bacteria grown planktonically and in antibiotic tolerant biofilms, against genetically resistant clinical isolates, and in lethal infections of mice. Drugs targeting AmgRS would thus be expected to enhance the clinical efficacy of aminoglycosides. Unexpectedly, the loss of AmgRS reduced virulence in the absence of antibiotics, indicating that its inactivation could protect against infection directly as well as by enhancing aminoglycoside action. Transcription profiling and phenotypic analysis suggested that AmgRS controls an adaptive response to membrane stress, which can be caused by aminoglycoside-induced translational misreading. These results help validate AmgRS as a potential antibiotic combination target for P. aeruginosa and indicate that fundamental stress responses may be a valuable general source of such targets.


Assuntos
Antibacterianos/farmacologia , Mutação , Pseudomonas aeruginosa/efeitos dos fármacos , Tobramicina/farmacologia , Aminoglicosídeos/farmacologia , Animais , Elementos de DNA Transponíveis/genética , Farmacorresistência Bacteriana/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Mutagênese Insercional , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/prevenção & controle , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Virulência/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA