RESUMO
Isl1 has been described as an embryonic master control gene expressed in the pericloacal mesenchyme. Deletion of Isl1 from the genital mesenchyme in mice leads to an ectopic urethral opening and epispadias-like phenotype. Using genome wide association methods, we identified ISL1 as the key susceptibility gene for classic bladder exstrophy (CBE), comprising epispadias and exstrophy of the urinary bladder. The most significant marker (rs6874700) identified in our recent GWAS meta-analysis achieved a p value of 1.48 × 10- 24 within the ISL1 region. In silico analysis of rs6874700 and all other genome-wide significant markers in Linkage Disequilibrium (LD) with rs6874700 (D' = 1.0; R2 > 0.90) revealed marker rs2303751 (p value 8.12 × 10- 20) as the marker with the highest regulatory effect predicted. Here, we describe a novel 1.2 kb intragenic promoter residing between 6.2 and 7.4 kb downstream of the ISL1 transcription starting site, which is located in the reverse DNA strand and harbors a binding site for EZH2 at the exact region of marker rs2303751. We show, that EZH2 silencing in HEK cells reduces ISL1 expression. We show that ezh2-/- knockout (KO) zebrafish larvae display tissues specificity of ISL1 regulation with reduced expression of Isl1 in the pronephric region of zebrafish larvae. In addition, a shorter and malformed nephric duct is observed in ezh2-/- ko zebrafish Tg(wt1ß:eGFP) reporter lines. Our study shows, that Ezh2 is a key regulator of Isl1 during urinary tract formation and suggests tissue specific ISL1 dysregulation as an underlying mechanism for CBE formation.
Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Proteínas com Homeodomínio LIM , Fatores de Transcrição , Peixe-Zebra , Animais , Humanos , Extrofia Vesical/genética , Extrofia Vesical/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Regulação da Expressão Gênica no Desenvolvimento , Estudo de Associação Genômica Ampla , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sistema Urinário/metabolismo , Sistema Urinário/anormalidades , Sistema Urinário/embriologia , Peixe-Zebra/embriologia , Peixe-Zebra/genéticaRESUMO
Polycomb group (PcG) proteins are highly conserved proteins assembled into two major types of complexes, PRC1 and PRC2, involved in the epigenetic silencing of a wide range of gene expression programs regulating cell fate and tissue development. The crucial role of PRC1 and PRC2 in the fundamental cellular processes and their involvement in human pathologies such as cancer attracted intense attention over the last few decades. Here, we review recent advancements regarding PRC1 and PRC2 function using the zebrafish model. We point out that the unique characteristics of the zebrafish model provide an exceptional opportunity to increase our knowledge of the role of the PRC1 and PRC2 complexes in tissue development, in the maintenance of organ integrity and in pathology.
Assuntos
Proteínas de Drosophila , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Epigênese Genética , Proteínas de Drosophila/metabolismo , Complexo Repressor Polycomb 1/metabolismoRESUMO
Epigenetic regulation contributes to the control of gene expression programs through local chromatin rearrangements [...].
Assuntos
Proteínas de Drosophila , Histonas , Cromatina/genética , Proteínas de Drosophila/metabolismo , Epigênese Genética , Histonas/metabolismo , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismoRESUMO
BACKGROUND: CD44 is a multifunctional membrane glycoprotein. Through its heparan sulfate chain, CD44 presents growth factors to their receptors. We have shown that CD44 and Tropomyosin kinase A (TrkA) form a complex following nerve growth factor (NGF) induction. Our study aimed to understand how CD44 and TrkA interact and the consequences of inhibiting this interaction regarding the pro-tumoral effect of NGF in breast cancer. METHODS: After determining which CD44 isoforms (variants) are involved in forming the TrkA/CD44 complex using proximity ligation assays, we investigated the molecular determinants of this interaction. By molecular modeling, we isolated the amino acids involved and confirmed their involvement using mutations. A CD44v3 mimetic peptide was then synthesized to block the TrkA/CD44v3 interaction. The effects of this peptide on the growth, migration and invasion of xenografted triple-negative breast cancer cells were assessed. Finally, we investigated the correlations between the expression of the TrkA/CD44v3 complex in tumors and histo-pronostic parameters. RESULTS: We demonstrated that isoform v3 (CD44v3), but not v6, binds to TrkA in response to NGF stimulation. The final 10 amino acids of exon v3 and the TrkA H112 residue are necessary for the association of CD44v3 with TrkA. Functionally, the CD44v3 mimetic peptide impairs not only NGF-induced RhoA activation, clonogenicity, and migration/invasion of breast cancer cells in vitro but also tumor growth and metastasis in a xenograft mouse model. We also detected TrkA/CD44v3 only in cancerous cells, not in normal adjacent tissues. CONCLUSION: Collectively, our results suggest that blocking the CD44v3/TrkA interaction can be a new therapeutic option for triple-negative breast cancers.
Assuntos
Neoplasias da Mama , Receptores de Hialuronatos , Fator de Crescimento Neural , Receptor trkA , Animais , Neoplasias da Mama/genética , Feminino , Humanos , Receptores de Hialuronatos/metabolismo , Camundongos , Fator de Crescimento Neural/farmacologia , Isoformas de Proteínas , Receptor trkA/metabolismoRESUMO
High-grade gliomas represent the most lethal class of pediatric tumors, and their resistance to both radio- and chemotherapy is associated with a poor prognosis. Recurrent mutations affecting histone genes drive the tumorigenesis of some pediatric high-grade gliomas, and H3K27M mutations are notably characteristic of a subtype of gliomas called DMG (Diffuse Midline Gliomas). This dominant negative mutation impairs H3K27 trimethylation, leading to profound epigenetic modifications of genes expression. Even though this mutation was described as a driver event in tumorigenesis, its role in tumor cell resistance to treatments has not been deciphered so far. To tackle this issue, we expressed the H3.3K27M mutated histone in three initially H3K27-unmutated pediatric glioma cell lines, Res259, SF188, and KNS42. First, we validated these new H3.3K27M-expressing models at the molecular level and showed that K27M expression is associated with pleiotropic effects on the transcriptomic signature, largely dependent on cell context. We observed that the mutation triggered an increase in cell growth in Res259 and SF188 cells, associated with higher clonogenic capacities. Interestingly, we evidenced that the mutation confers an increased resistance to ionizing radiations in Res259 and KNS42 cells. Moreover, we showed that H3.3K27M mutation impacts the sensitivity of Res259 cells to specific drugs among a library of 80 anticancerous compounds. Altogether, these data highlight that, beyond its tumorigenic role, H3.3K27M mutation is strongly involved in pediatric glioma cells' resistance to therapies, likely through transcriptomic reprogramming.
RESUMO
Polycomb repressive complex 2 (PRC2) mediates histone H3K27me3 methylation and the stable transcriptional repression of a number of gene expression programs involved in the control of cellular identity during development and differentiation. Here, we report on the generation and on the characterization of a zebrafish line harboring a null allele of eed, a gene coding for an essential component of the PRC2. Homozygous eed-deficient mutants present a normal body plan development but display strong defects at the level of the digestive organs, such as reduced size of the pancreas, hepatic steatosis, and a loss of the intestinal structures, to die finally at around 10-12 days post fertilization. In addition, we found that PRC2 loss of function impairs neuronal differentiation in very specific and discrete areas of the brain and increases larval activity in locomotor assays. Our work highlights that zebrafish is a suited model to study human pathologies associated with PRC2 loss of function and H3K27me3 decrease.
Assuntos
Sistema Digestório/metabolismo , Homeostase , Neurônios/citologia , Complexo Repressor Polycomb 2/deficiência , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Comportamento Animal , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Larva/metabolismo , Fígado/metabolismo , Lisina/metabolismo , Metilação , Atividade Motora , Mutação/genética , Neurônios/metabolismo , Especificidade de Órgãos , Complexo Repressor Polycomb 2/metabolismo , Processamento de Proteína Pós-Traducional , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismoRESUMO
Tremendous data have been accumulated in the effort to understand chemoresistance of triple negative breast cancer (TNBC). However, modifications in cancer cells surviving combined and sequential treatment still remain poorly described. In order to mimic clinical neoadjuvant treatment, we first treated MDA-MB-231 and SUM159-PT TNBC cell lines with epirubicin and cyclophosphamide for 2 days, and then with paclitaxel for another 2 days. After 4 days of recovery, persistent cells surviving the treatment were characterized at both cellular and molecular level. Persistent cells exhibited increased growth and were more invasive in vitro and in zebrafish model. Persistent cells were enriched for vimentinhigh sub-population, vimentin knockdown using siRNA approach decreased the invasive and sphere forming capacities as well as Akt phosphorylation in persistent cells, indicating that vimentin is involved in chemotherapeutic treatment-induced enhancement of TNBC aggressiveness. Interestingly, ectopic vimentin overexpression in native cells increased cell invasion and sphere formation as well as Akt phosphorylation. Furthermore, vimentin overexpression alone rendered the native cells resistant to the drugs, while vimentin knockdown rendered them more sensitive to the drugs. Together, our data suggest that vimentin could be considered as a new targetable player in the ever-elusive status of drug resistance and recurrence of TNBC.
Assuntos
Resistencia a Medicamentos Antineoplásicos/fisiologia , Neoplasias de Mama Triplo Negativas/metabolismo , Vimentina/fisiologia , Animais , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Ciclofosfamida/farmacologia , Modelos Animais de Doenças , Tratamento Farmacológico/métodos , Epirubicina/farmacologia , Transição Epitelial-Mesenquimal , Feminino , Humanos , Terapia Neoadjuvante/métodos , Invasividade Neoplásica/patologia , Recidiva Local de Neoplasia , Paclitaxel/uso terapêutico , Neoplasias de Mama Triplo Negativas/patologia , Vimentina/metabolismo , Peixe-ZebraRESUMO
Activin-like factors control many developmental processes, including pluripotency maintenance and differentiation. Although Activin-like factors' action in mesendoderm induction has been demonstrated in zebrafish, their involvement in preserving the stemness remains unknown. To investigate the role of maternal Activin-like factors, their effects were promoted or blocked using synthetic human Activin A or SB-431542 treatments respectively until the maternal to zygotic transition. To study the role of zygotic Activin-like factors, SB-431542 treatment was also applied after the maternal to zygotic transition. The effect of the pharmacological modulations of the Activin/Smad pathway was then studied on the mRNA expressions of the ndr1, ndr2, tbxta (no tail/ntl) as the differentiation index, mych, nanog, and oct4 (pou5f3) as the pluripotency markers of the zebrafish embryonic cells as well as sox17 as a definitive endoderm marker. Expression of the target genes was measured at the 16-cell, 256-cell, 1K-cell, oblong, dome, and shield stages using the real-time quantitative polymerase chain reaction (RT-qPCR). Activation of the maternal Activin signaling pathway led to an increase in zygotic expression of the tbxta, particularly marked at the oblong stage. In other words, promotion of the maternal Activin/Smad pathway induced differentiation by advancing the major peaks of ndr1 and nanog, thereby eliciting tbxta expression. Whereas suppression of the maternal or zygotic Activin/Smad pathway sustained the pluripotency by preventing the major peaks of ndr1 and nanog as well as tbxta encoding.
Assuntos
Ativinas/metabolismo , Antígenos de Diferenciação , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Antígenos de Diferenciação/genética , Peptídeos e Proteínas de Sinalização Intracelular , Proteína Homeobox Nanog , Ligantes da Sinalização Nodal , Fator 3 de Transcrição de Octâmero , Fatores de Transcrição SOXF , Fatores de Transcrição , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genéticaRESUMO
Zebrafish (Danio rerio) is an excellent model to study a wide diversity of human cancers. In this review, we provide an overview of the genetic and reverse genetic toolbox allowing the generation of zebrafish lines that develop tumors. The large spectrum of genetic tools enables the engineering of zebrafish lines harboring precise genetic alterations found in human patients, the generation of zebrafish carrying somatic or germline inheritable mutations or zebrafish showing conditional expression of the oncogenic mutations. Comparative transcriptomics demonstrate that many of the zebrafish tumors share molecular signatures similar to those found in human cancers. Thus, zebrafish cancer models provide a unique in vivo platform to investigate cancer initiation and progression at the molecular and cellular levels, to identify novel genes involved in tumorigenesis as well as to contemplate new therapeutic strategies.
RESUMO
Breast cancer is a major public health problem and the leading world cause of women death by cancer. Both the recurrence and mortality of breast cancer are mainly caused by the formation of metastasis. The long non-coding RNA H19, the precursor of miR-675, is involved in breast cancer development. The aim of this work was to determine the implication but, also, the relative contribution of H19 and miR-675 to the enhancement of breast cancer metastatic potential. We showed that both H19 and miR-675 increase the invasive capacities of breast cancer cells in xenografted transgenic zebrafish models. In vitro, H19 and miR-675 enhance the cell migration and invasion, as well as colony formation. H19 seems to induce the epithelial-to-mesenchymal transition (EMT), with a decreased expression of epithelial markers and an increased expression of mesenchymal markers. Interestingly, miR-675 simultaneously increases the expression of both epithelial and mesenchymal markers, suggesting the induction of a hybrid phenotype or mesenchymal-to-epithelial transition (MET). Finally, we demonstrated for the first time that miR-675, like its precursor H19, increases the stemness properties of breast cancer cells. Altogether, our data suggest that H19 and miR-675 could enhance the aggressiveness of breast cancer cells through both common and different mechanisms.
RESUMO
The Polycomb Repressive Complex 1 (PRC1) is a chromatin-associated protein complex involved in transcriptional repression of hundreds of genes controlling development and differentiation processes, but also involved in cancer and stem cell biology. Within the canonical PRC1, members of Pc/CBX protein family are responsible for the targeting of the complex to specific gene loci. In mammals, the Pc/CBX protein family is composed of five members generating, through mutual exclusion, different PRC1 complexes with potentially distinct cellular functions. Here, we performed a global analysis of the cbx gene family in 68 teleost species and traced the distribution of the cbx genes through teleost evolution in six fish super-orders. We showed that after the teleost-specific whole genome duplication, cbx4, cbx7 and cbx8 are retained as pairs of ohnologues. In contrast, cbx2 and cbx6 are present as pairs of ohnologues in the genome of several teleost clades but as singletons in others. Furthermore, since zebrafish is a widely used vertebrate model for studying development, we report on the expression of the cbx family members during zebrafish development and in adult tissues. We showed that all cbx genes are ubiquitously expressed with some variations during early development.
Assuntos
Cromatina/metabolismo , Proteínas de Peixes/genética , Peixes/genética , Duplicação Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Grupo Polycomb/genética , Peixe-Zebra/genética , Animais , Diferenciação Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/genética , Proteínas de Peixes/metabolismo , Peixes/crescimento & desenvolvimento , Genoma , Proteínas do Grupo Polycomb/metabolismo , Peixe-Zebra/crescimento & desenvolvimentoRESUMO
Primarily used in genetic studies of development, the zebrafish (Danio rerio) has rapidly emerged as a promising animal model of human cancer. Cancer cell transplantation in zebrafish constitutes a key platform for clinical research since it allows to study cellular and molecular events involved in various aspects of tumorigenesis and to evaluate the efficacy of therapeutic molecules in vivo. Applied to patient-derived cells, the xenotransplantation approach in zebrafish allows to define the most appropriate therapeutic strategies for specific alterations found in patients in the context of personalized medicine. This review discusses the zebrafish transplantation model for the study of cancer development and drug discovery.
Assuntos
Transplante de Neoplasias , Neoplasias Experimentais/etiologia , Medicina de Precisão/métodos , Pesquisa Translacional Biomédica/métodos , Peixe-Zebra , Imunidade Adaptativa , Animais , Animais Geneticamente Modificados , Transformação Celular Neoplásica , Modelos Animais de Doenças , Progressão da Doença , Descoberta de Drogas , Genes Neoplásicos , Xenoenxertos , Humanos , Terapia de Imunossupressão/métodos , Neoplasias Experimentais/genética , Oncogenes , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/imunologiaRESUMO
Maintenance of epigenetic modifiers is of utmost importance to preserve the epigenome and consequently appropriate cellular functioning. Here, we analyzed Polycomb group protein (PcG) complex integrity in response to heat shock (HS). Upon HS, various Polycomb Repressive Complex (PRC)1 and PRC2 subunits, including CBX proteins, but also other chromatin regulators, are found to accumulate in the nucleolus. In parallel, binding of PRC1/2 to target genes is strongly reduced, coinciding with a dramatic loss of H2AK119ub and H3K27me3 marks. Nucleolar-accumulated CBX proteins are immobile, but remarkably both CBX protein accumulation and loss of PRC1/2 epigenetic marks are reversible. This post-heat shock recovery of pan-nuclear CBX protein localization and reinstallation of epigenetic marks is HSP70 dependent. Our findings demonstrate that the nucleolus is an essential protein quality control center, which is indispensable for recovery of epigenetic regulators and maintenance of the epigenome after heat shock.
Assuntos
Nucléolo Celular/metabolismo , Epigênese Genética/efeitos da radiação , Resposta ao Choque Térmico , Complexo Repressor Polycomb 1/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Linhagem Celular , Proteínas de Choque Térmico HSP70/metabolismo , HumanosRESUMO
Trimethylation on H3K27 mediated by Polycomb Repressive Complex 2 (PRC2) is required to control gene repression programs involved in development, regulation of tissue homeostasis or maintenance and lineage specification of stem cells. In Drosophila, the PRC2 catalytic subunit is the single protein E(z), while in mammals this function is fulfilled by two proteins, Ezh1 and Ezh2. Based on database searches, we propose that Ezh1 arose from an Ezh2 gene duplication that has occurred in the common ancestor to elasmobranchs and bony vertebrates. Expression studies in zebrafish using in situ hybridization and RT-PCR followed by the sequencing of the amplicon revealed that ezh1 mRNAs are maternally deposited. Then, ezh1 transcripts are ubiquitously distributed in the entire embryo at 24 hpf and become more restricted to anterior part of the embryo at later developmental stages. To unveil the function of ezh1 in zebrafish, a mutant line was generated using the TALEN technology. Ezh1-deficient mutant fish are viable and fertile, but the loss of ezh1 function is responsible for the earlier death of ezh2 mutant larvae indicating that ezh1 contributes to zebrafish development in absence of zygotic ezh2 gene function. Furthermore, we show that presence of ezh1 transcripts from the maternal origin accounts for the delayed lethality of ezh2-deficient larvae.
Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/genética , Duplicação Gênica , Complexo Repressor Polycomb 2/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Animais , Proteína Potenciadora do Homólogo 2 de Zeste/deficiência , Proteína Potenciadora do Homólogo 2 de Zeste/fisiologia , Longevidade , Complexo Repressor Polycomb 2/deficiência , Complexo Repressor Polycomb 2/fisiologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/fisiologiaRESUMO
Zebrafish is a powerful animal model used to study vertebrate embryogenesis, organ development and diseases (Gut et al., 2017) [1]. The usefulness of the model was established as a result of various large forward genetic screens identifying mutants in almost every organ or cell type (Driever et al., 1996; Haffter et al., 1996) [[2], [3]]. More recently, the advent of genome editing methodologies, including TALENs (Sander et al., 2011) [4] and the CRISPR/Cas9 technology (Hwang et al., 2013) [5], led to an increase in the production of zebrafish mutants. A number of these mutations are homozygous lethal at the embryonic or larval stages preventing the generation of homozygous mutant zebrafish lines. Here, we present a method allowing both genotyping and phenotype analyses of mutant zebrafish larvae from heterozygous zebrafish incrosses. The procedure is based on the genotyping of the larval tail after transection, whereas phenotypic studies are performed on the anterior part of the zebrafish larvae. â¢The method includes (i) a protocol for genotyping, (ii) protocols for paraffin embedding and histological analyses, (iii) protocols for protein and histone extraction and characterization by Western blot, (iv) protocols for RNA extraction and characterization by RT-PCR, and (v) protocols to study caudal spinal cord regeneration.â¢The technique is optimized in order to be applied on single zebrafish embryos and larvae.
RESUMO
Although cell culture and mouse models will remain a cornerstone of cancer research, the unique capabilities of the zebrafish outline the potential of this model for shedding light on cancer biology in vivo. Zebrafish develops cancers spontaneously, after chemical mutagenesis or through genetic manipulations. Furthermore, zebrafish cancers are similar to human tumors at the histological and molecular levels allowing the study of tumor initiation, progression and heterogeneity. Xenotransplantation of human cancer cells in embryos or adult zebrafish presents the advantage of following cancer cell behavior in vivo. Finally, zebrafish embryos are used in molecule screens and contribute to the identification of novel anti-cancer therapeutic strategies. Here, we review different involvements of the zebrafish model in cancer research.
Assuntos
Modelos Animais de Doenças , Oncologia , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Embrião não Mamífero , Humanos , Oncologia/métodos , Oncologia/tendências , Mutagênese/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genéticaRESUMO
The histone lysine methyltransferase EZH2, as part of the Polycomb Repressive Complex 2 (PRC2), mediates H3K27me3 methylation which is involved in gene expression program repression. Through its action, EZH2 controls cell-fate decisions during the development and the differentiation processes. Here, we report the generation and the characterization of an ezh2-deficient zebrafish line. In contrast to its essential role in mouse early development, loss of ezh2 function does not affect zebrafish gastrulation. Ezh2 zebrafish mutants present a normal body plan but die at around 12 dpf with defects in the intestine wall, due to enhanced cell death. Thus, ezh2-deficient zebrafish can initiate differentiation toward the different developmental lineages but fail to maintain the intestinal homeostasis. Expression studies revealed that ezh2 mRNAs are maternally deposited. Then, ezh2 is ubiquitously expressed in the anterior part of the embryos at 24 hpf, but its expression becomes restricted to specific regions at later developmental stages. Pharmacological inhibition of Ezh2 showed that maternal Ezh2 products contribute to early development but are dispensable to body plan formation. In addition, ezh2-deficient mutants fail to properly regenerate their spinal cord after caudal fin transection suggesting that Ezh2 and H3K27me3 methylation might also be involved in the process of regeneration in zebrafish.
Assuntos
Nadadeiras de Animais/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Regeneração/fisiologia , Proteínas de Peixe-Zebra/biossíntese , Peixe-Zebra/metabolismo , Animais , Proteína Potenciadora do Homólogo 2 de Zeste , Deleção de Genes , Metilação , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genéticaRESUMO
Polycomb Repressive Complex (PRC) 1 regulates the control of gene expression programs via chromatin structure reorganization. Through mutual exclusion, different PCGF members generate a variety of PRC1 complexes with potentially distinct cellular functions. In this context, the molecular function of each of the PCGF family members remains elusive. The study of PCGF family member expression in zebrafish development and during caudal fin regeneration reveals that the zebrafish pcgf genes are subjected to different regulations and that all PRC1 complexes in terms of Pcgf subunit composition are not always present in the same tissues. To unveil the function of Pcgf1 in zebrafish, a mutant line was generated using the TALEN technology. Mutant pcgf1-/- fish are viable and fertile, but the growth rate at early developmental stages is reduced in absence of pcgf1 gene function and a significant number of pcgf1-/- fish show signs of premature aging. This first vertebrate model lacking Pcgf1 function shows that this Polycomb Group protein is involved in cell proliferation during early embryogenesis and establishes a link between epigenetics and aging.
Assuntos
Envelhecimento/genética , Desenvolvimento Embrionário/genética , Complexo Repressor Polycomb 1/genética , Proteínas Repressoras/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Nadadeiras de Animais/fisiologia , Animais , Sequência de Bases , Osso e Ossos/embriologia , Osso e Ossos/metabolismo , Cartilagem/embriologia , Cartilagem/metabolismo , Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Imuno-Histoquímica , Mutação/genética , Fenótipo , Fosfoproteínas/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Regeneração , Proteínas Repressoras/metabolismo , Homologia de Sequência de Aminoácidos , Crânio/irrigação sanguínea , Crânio/embriologia , Crânio/metabolismo , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição , Proteínas de Peixe-Zebra/metabolismoRESUMO
Long non-coding RNAs (lncRNAs) are transcripts without protein-coding potential but having a pivotal role in numerous biological functions. Long non-coding RNAs act as regulators at different levels of gene expression including chromatin organization, transcriptional regulation, and post-transcriptional control. Misregulation of lncRNAs expression has been found to be associated to cancer and other human disorders. Here, we review the different types of lncRNAs, their mechanisms of action on genome formatting and expression and emphasized on the multifaceted action of the H19 lncRNA.
RESUMO
EZH2 is the catalytic subunit of Polycomb Repressor Complex 2 (PRC2) which catalyzes methylation of histone H3 at lysine 27 (H3K27me) and mediates gene silencing of target genes via local chromatin reorganization. Numerous evidences show that EZH2 plays a critical role in cancer initiation, progression and metastasis, as well as in cancer stem cell biology. Indeed, EZH2 dysregulation alters gene expression programs in various cancer types. The molecular mechanisms responsible for EZH2 alteration appear to be diverse and depending on the type of cancer. Furthermore, accumulating evidences indicate that EZH2 could also act as a PRC2-independent transcriptional activator in cancer. In this review, we address the current understanding of the oncogenic role of EZH2, including the mechanisms of EZH2 dysregulation in cancer and progresses in therapeutic approaches targeting EZH2.