Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Salud Publica Mex ; 65(4, jul-ago): 387-393, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38060903

RESUMO

OBJECTIVE: To development of a methodology for the chilling, handling, transport, and release of male Aedes aegypti mosquitoes, reared in insectary conditions to release in the field with unmanned vehicles to compete sexually with wild males in the field. MATERIALS AND METHODS: A population of Ae. aegypti from different areas in Tapachula, Chiapas, was used. Laboratory tests were conducted: Effect of temperature and cooling time on the knockdown, recovery of males, and copulatory success. RESULTS: The chilling temperature of 3 ± 1ºC for 30 min, was used as a knockdown temperature before handling, packing, transportation, and aerial release. The males subjected to the entire process, including the semi-field aerial release test, showed normal sexual behavior activity, obtaining 100% of females inseminated. CONCLUSION: These results present the feasibility of applying a new control methodology using unmanned aerial vehicle (UAV) as support for the sterile insect release technique (SIT), use of Wolbachia or both, in male Ae. aegypti, for the design of strategies to control their populations.


Assuntos
Aedes , Wolbachia , Humanos , Animais , Feminino , Masculino , Dispositivos Aéreos não Tripulados , Temperatura , Comportamento Sexual , Controle de Mosquitos/métodos
2.
Insects ; 13(4)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35447790

RESUMO

Sterile males of Aedes aegypti were released once a week for 8 weeks to evaluate the dispersal efficiency of ground and aerial drone release methods in a rural village of 26 Ha in southern Mexico. Indoor and outdoor BG-Sentinel traps were placed in 13−16 houses distributed throughout the village. The BG traps were activated 48 h after the release of the sterile males and functioned for a 24 h period following each release. Over the 8-week period of simultaneous ground and aerial releases, an average of 85,117 ± 6457 sterile males/week were released at ground level and 86,724 ± 6474 sterile males/week were released using an aerial drone. The ground release method resulted in higher numbers of captured males (mean = 5.1 ± 1.4, range 1.1−15.7 sterile males/trap) compared with the aerial release method (mean = 2.6 ± 0.8, range 0.5−7.3 sterile males/trap) (p < 0.05). Similarly, the prevalence of traps that captured at least one sterile male was significantly higher for ground release compared to the aerial release method (p < 0.01). The lower numbers of sterile males captured in the aerial release method could be due to mortality or physical injury caused by the chilling process for immobilization, or the compaction of these insects during transport and release. However, aerial releases by a two-person team distributed insects over the entire village in just 20 min, compared to ~90 min of work for a five-person team during the ground release method. Ground release also resulted in higher aggregations of males and some villagers reported feeling discomfort from the presence of large numbers of mosquitoes in and around their houses. We conclude that modifications to the handling and transport of sterile males and the design of containers used to store males are required to avoid injury and to improve the efficiency of aerial releases for area-wide SIT-based population suppression programs targeted at mosquito vectors of human disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA