Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37444239

RESUMO

This is the first investigation, conducted in a completely randomized design (CRD), to determine the effects of different salinity levels (75 and 150 mM) and germination periods (3, 4, and 5 days) on momilactone and phenolic accumulations in germinated brown rice (GBR) var. Koshihikari. Particularly, the identification of bioactive compounds was confirmed using electrospray ionization-mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) spectroscopy (1H and 13C). Momilactone A (MA) and momilactone B (MB) amounts were determined by ultra-performance liquid chromatography-electrospray ionization-mass spectrometry (UPLC-ESI-MS), whereas other compounds were quantified by spectrophotometry and high-performance liquid chromatography (HPLC). Accordingly, GBR under B2 treatment (75 mM salinity for 4 days) showed the greatest total phenolic and flavonoid contents (14.50 mg gallic acid and 11.06 mg rutin equivalents, respectively, per g dry weight). GBR treated with B2 also accumulated the highest quantities of MA, MB, ρ-coumaric, ferulic, cinnamic, salicylic acids, and tricin (18.94, 41.00, 93.77, 139.03, 46.05, 596.26, and 107.63 µg/g DW, respectively), which were consistent with the strongest antiradical activities in DPPH and ABTS assays (IC50 = 1.58 and 1.78 mg/mL, respectively). These findings have implications for promoting the value of GBR consumption and rice-based products that benefit human health.

2.
Plants (Basel) ; 12(12)2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37375984

RESUMO

Salinity is a severe stress that causes serious losses in rice production worldwide. This study, for the first time, investigated the effects of fulvic acid (FA) with various concentrations of 0.125, 0.25, 0.5, and 1.0 mL/L on the ability of three rice varieties, Koshihikari, Nipponbare, and Akitakomachi, to cope with a 10 dS/m salinity level. The results show that the T3 treatment (0.25 mL/L FA) is the most effective in stimulating the salinity tolerance of all three varieties by enhancing their growth performance. T3 also promotes phenolic accumulation in all three varieties. In particular, salicylic acid, a well-known salt-stress-resistant substance, is found to increase during salinity stress in Nipponbare and Akitakomachi treated with T3 by 88% and 60%, respectively, compared to crops receiving salinity treatment alone. Noticeably, the levels of momilactones A (MA) and B (MB) fall in salt-affected rice. However, their levels markedly rise in rice treated with T3 (by 50.49% and 32.20%, respectively, in Nipponbare, and by 67.76% and 47.27%, respectively, in Akitakomachi), compared to crops receiving salinity treatment alone. This implies that momilactone levels are proportional to rice tolerance against salinity. Our findings suggest that FA (0.25 mL/L) can effectively improve the salinity tolerance of rice seedlings even in the presence of a strong salt stress of 10 dS/m. Further studies on FA application in salt-affected rice fields should be conducted to confirm its practical implications.

3.
Cancers (Basel) ; 14(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36230771

RESUMO

This is the first study clarifying the cytotoxic mechanism of momilactones A (MA) and B (MB) on acute promyelocytic leukemia (APL) HL-60 and multiple myeloma (MM) U266 cell lines. Via the MTT test, MB and the mixture MAB (1:1, w/w) exhibit a potent cytotoxicity on HL-60 (IC50 = 4.49 and 4.61 µM, respectively), which are close to the well-known drugs doxorubicin, all-trans retinoic acid (ATRA), and the mixture of ATRA and arsenic trioxide (ATRA/ATO) (1:1, w/w) (IC50 = 5.22, 3.99, and 3.67 µM, respectively). Meanwhile MB, MAB, and the standard suppressor doxorubicin substantially inhibit U266 (IC50 = 5.09, 5.59, and 0.24 µM, respectively). Notably, MB and MAB at 5 µM may promote HL-60 and U266 cell apoptosis by activating the phosphorylation of p-38 in the mitogen-activated protein kinase (MAPK) pathway and regulating the relevant proteins (BCL-2 and caspase-3) in the mitochondrial pathway. Besides, these compounds may induce G2 phase arrest in the HL-60 cell cycle through the activation of p-38 and disruption of CDK1 and cyclin B1 complex. Exceptionally, momilactones negligibly affect the non-cancerous cell line MeT-5A. This finding provides novel insights into the anticancer property of momilactones, which can be a premise for future studies and developments of momilactone-based anticancer medicines.

4.
Molecules ; 27(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35408706

RESUMO

This is the first study to examine the effects of in vitro digestion on biological activities of Sargassum spp., a broadly known brown seaweed for therapeutic potential. Three fractions (F1-F3) were obtained from hexane extract by column chromatography. Under in vitro simulated digestion, the anti-α-amylase capacity of F1 in oral and intestinal phases increases, while it significantly decreases in the gastric phase. The α-amylase inhibition of F2 promotes throughout all digestive stages while the activity of F3 significantly reduces. The cytotoxic activity of F1 against U266 cell-line accelerates over the oral, gastric, and intestinal stages. The fractions F2 and F3 exhibited the declined cytotoxic potentialities in oral and gastric phases, but they were strengthened under intestinal condition. Palmitic acid and fucosterol may play an active role in antidiabetic and cytotoxic activity against multiple myeloma U266 cell line of Sargassum spp. However, the involvement of other phytochemicals in the seaweed should be further investigated.


Assuntos
Sargassum , Alga Marinha , Digestão , Hipoglicemiantes/farmacologia , Compostos Fitoquímicos , Sargassum/química , alfa-Amilases
5.
Molecules ; 27(7)2022 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-35408721

RESUMO

Callerya speciosa is widely distributed in tropical and subtropical countries and is traditionally used for preventing numerous disorders. In this study, a bioguided fractionation of ethyl acetate extract (SE) from C. speciosa root was carried out to target antioxidant and cytotoxic activities. Of the four fractions (SE1-SE4) obtained by column chromatography, SE4 had the strongest anti-radical ability in the DPPH and ABTS assays (IC50 = 0.05 and 0.17 mg/mL, respectively), with results close to butylated hydroxytoluene (BHT), a common antioxidant agent. The cytotoxic activities against the selected cells were analyzed in this study by MTT assay. Accordingly, SE2, SE3, and SE4 significantly inhibited the viability of multiple myeloma cell lines, comprising U266 (IC50 = 0.38, 0.09, and 0.11 mg/mL, respectively) and KMS11 (IC50 = 0.09, 0.17, and 0.15 mg/mL, respectively), mantle cell lymphoma Mino (IC50 = 0.08, 0.16, and 0.15 mg/mL, respectively), and the noncancerous cell line LCL (IC50 = 0.40, 0.32, and 0.21 mg/mL, respectively). At a concentration of 125 µg/mL, SE2, SE3, and SE4 induced the cell apoptosis of U266 (32.2%, 53.2%, and 55.6%, respectively), KMS11 (36.9%, 40.8%, and 47.9%, respectively), Mino (36.6%, 39.8%, and 22.0%, respectively), and LCL (12.4%, 17.5%, and 23.5%, respectively) via annexin V assay. The dominant compounds detected in fractions by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS), were identified as isoflavones. This is the first report describing C. speciosa as a promising natural source of antileukemia and antimyeloma agents, which may be useful for the development of blood cancer treatments.


Assuntos
Fabaceae , Linfoma , Mieloma Múltiplo , Adulto , Antioxidantes/química , Antioxidantes/farmacologia , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Humanos , Linfoma/tratamento farmacológico , Mieloma Múltiplo/tratamento farmacológico , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
6.
Molecules ; 27(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35164038

RESUMO

Essential oils (EOs) of Clausena indica fruits, Zanthoxylum rhetsa fruits, and Michelia tonkinensis seeds were analyzed for their phytochemical profiles and biological activities, including anti-diabetes, anti-gout, and anti-leukemia properties. Sixty-six volatile compounds were identified by gas chromatography-mass spectrometry (GC-MS), in which, myristicin (68.3%), limonene (44.2%), and linalool (49.3%) were the most prominent components of EOs extracted from C. indica, Z. rhetsa, and M. tonkinensis, respectively. In addition, only EOs from C. indica inhibited the activities of all tested enzymes comprising α-amylase (IC50 = 7.73 mg/mL), α-glucosidase (IC50 = 0.84 mg/mL), and xanthine oxidase (IC50 = 0.88 mg/mL), which are related to type 2 diabetes and gout. Remarkably, all EOs from C. indica, Z. rhetsa (IC50 = 0.73 mg/mL), and M. tonkinensis (IC50 = 1.46 mg/mL) showed a stronger anti-α-glucosidase ability than acarbose (IC50 = 2.69 mg/mL), a known anti-diabetic agent. Moreover, the growth of leukemia cell Meg-01 was significantly suppressed by all EOs, of which, the IC50 values were recorded as 0.32, 0.64, and 0.31 mg/mL for EOs from C. indica, Z. rhetsa, and M. tonkinensis, respectively. As it stands, this is the first report about the inhibitory effects of EOs from C. indica and Z. rhetsa fruits, and M. tonkinensis seeds on the human leukemia cell line Meg-01 and key enzymes linked to diabetes and gout. In conclusion, the present study suggests that EOs from these natural spices may be promising candidates for pharmaceutical industries to develop nature-based drugs to treat diabetes mellitus or gout, as well as malignant hematological diseases such as leukemia.


Assuntos
Antineoplásicos/uso terapêutico , Clausena/química , Supressores da Gota/uso terapêutico , Hipoglicemiantes/uso terapêutico , Leucemia/tratamento farmacológico , Magnoliaceae/química , Óleos Voláteis/uso terapêutico , Zanthoxylum/química , Humanos , Óleos Voláteis/química
7.
Molecules ; 26(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34885832

RESUMO

Celastrus hindsii is a popular medicinal plant in Vietnam and Southeast Asian countries as well as in South America. In this study, an amount of 12.05 g of an α-amyrin and ß-amyrin mixture was isolated from C. hindsii (10.75 g/kg dry weight) by column chromatography applying different solvent systems to obtain maximum efficiency. α-Amyrin and ß-amyrin were then confirmed by gas chromatography-mass spectrometry (GC-MS), electrospray ionization-mass spectrometry (ESI-MS), and nuclear magnetic resonance (NMR). The antioxidant activities of the α-amyrin and ß-amyrin mixture were determined via 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,20-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays with IC50 of 125.55 and 155.28 µg/mL, respectively. The mixture exhibited a high potential for preventing gout by inhibiting a relevant key enzyme, xanthine oxidase (XO) (IC50 = 258.22 µg/mL). Additionally, an important enzyme in skin hyperpigmentation, tyrosinase, was suppressed by the α-amyrin and ß-amyrin mixture (IC50 = 178.85 µg/mL). This study showed that C. hindsii is an abundant source for the isolation of α-amyrin and ß-amyrin. Furthermore, this was the first study indicating that α-amyrin and ß-amyrin mixture are promising in future therapies for gout and skin hyperpigmentation.


Assuntos
Antioxidantes/farmacologia , Celastrus/química , Inibidores Enzimáticos/farmacologia , Monofenol Mono-Oxigenase/antagonistas & inibidores , Ácido Oleanólico/análogos & derivados , Triterpenos Pentacíclicos/isolamento & purificação , Folhas de Planta/química , Xantina Oxidase/antagonistas & inibidores , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Cromatografia Gasosa-Espectrometria de Massas , Monofenol Mono-Oxigenase/metabolismo , Ácido Oleanólico/química , Ácido Oleanólico/isolamento & purificação , Triterpenos Pentacíclicos/química , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray , Xantina Oxidase/metabolismo
8.
Plants (Basel) ; 10(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396235

RESUMO

Andropogon virginicus is an invasive weed that seriously threatens agricultural production and economics worldwide. In this research, dried aerial parts of A. virginicus were extracted, applying Soxhlet and liquid-liquid phase methods to acquire the total crude (T-Anvi), hexane (H-Anvi), ethyl acetate (E-Anvi), butanol (B-Anvi), and water (W-Anvi) extracts, respectively. In which, T-Anvi contains the highest total phenolic and flavonoid contents (24.80 mg gallic acid and 37.40 mg rutin equivalents per g dry weight, respectively). Via anti-radical (ABTS and DPPH), and reducing power assays, E-Anvi exhibits the most potent activities (IC50 = 13.96, 43.59 and 124.11 µg/mL, respectively), stronger than butylated hydroxytoluene (BHT), a standard antioxidant, while the lipid peroxidation inhibitory effect of E-Anvi (LPI = 90.85% at the concentration of 500 µg/mL) is close to BHT. E-Anvi shows the most substantial inhibition (IC50 = 2.58 mg/mL) on tyrosinase. Notably, α-amylase is significantly suppressed by H-Anvi (IC50 = 0.72 mg/mL), over twice stronger than the positive control, palmitic acid. In the cytotoxic assay, E-Anvi is the strongest extract inhibiting K562 cells (IC50 = 112.01 µg/mL). Meanwhile, T-Anvi shows the highest prevention on Meg-01 expansion (IC50 = 91.40 µg/mL). Dominant compounds detected in E-Anvi by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) are identified as flavonoids. However, among four major compounds identified in H-Anvi by gas chromatography-mass spectrometry (GC-MS), palmitic acid and phytol are the most abundant compounds with peak areas of 27.97% and 16.42%, respectively. In essence, this is the first report describing that A. virginicus is a potential natural source of antioxidants, tyrosinase and α-amylase inhibitors, and anti-chronic myeloid leukemia (CML) agents which may be useful in future therapeutics as promising alternative medicines.

9.
Molecules ; 24(24)2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31817276

RESUMO

Clausena indica fruits are routinely used for the culinary purpose as natural spices, whereas leaves and roots are folk medicine with various health benefits in southern China, South and Southeast Asia. In this study, the bioassay-guided fractionation by column chromatography yielded three pure compounds including dentatin, nordentatin, and clausine K and five active fractions (Re1-5) from C. indica roots. These known anticancer compounds were confirmed by X-ray diffraction, 1H-, 13C-nuclear magnetic resonance (NMR), and electrospray ionization tandem mass spectrometric (ESI-MS-MS) analyses. Meanwhile, the phytochemical constituents from fractions were identified by gas chromatography-mass spectrometry (GC-MS). The isolates, fractions' components and their biological activities were first time investigated on C. indica. By in vitro DPPH and ABTS scavenging assays, nordentatin (IC50 = 49.2 and 69.9 µg/mL, respectively) and the fraction Re4 (32.4 and 38.5 µg/mL, respectively) showed the strongest antiradical activities, whereas clausine K presented a moderate and dentatin had negligible antioxidant activity, respectively. The anti-α-amylase activity of C. indica root extracts was mainly attributed to the fraction Re2 which inactivated the enzymatic assay with IC50 of 573.8 µg/mL. Among tested samples, only nordentatin and clausine K were effective in the pancreatic elastase inhibition, however, their influences were trivial. Markedly, clausine K and Re4 performed the most remarkable tyrosinase inhibition with IC50 values of 179.5 and 243.8 µg/mL, respectively, which were in turn 4 and 3 times stronger than myricetin (IC50 = 735.6 µg/mL), a well-known tyrosinase inhibitor. This is the first report affirming clausine K to be a new strong tyrosinase inhibitor. Isolated compounds from C. indica roots were quantified by high-performance liquid chromatography (HPLC), of which, dentatin, nordentatin, and clausine K accounted for 14.74, 6.14, and 1.28 mg/g dry weight. The findings suggest that bioactive constituents from C. indica roots may be potentially employed for the development of antidiabetic, antiaging and cosmetic agents.


Assuntos
Clausena/química , Compostos Fitoquímicos/isolamento & purificação , Raízes de Plantas/química , Antioxidantes/farmacologia , Inibidores Enzimáticos/farmacologia , Conformação Molecular , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química
10.
Plants (Basel) ; 7(2)2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29738464

RESUMO

The objective of this study was to evaluate the allelopathic responses of rice seedlings under submergence stress at different temperatures (10, 25, 32, and 37 °. The results showed that a wide range of allelopathic responses of rice seedlings depended on varieties and stress conditions, with temperature was being a key factor. It showed that the extracts of rice seedlings induced significant suppression on lettuce and radish seedling germination, but had negligible allelopathic effects on growth of barnyardgrass, whilst the emergence and growth of natural weeds was stimulated. In contrast, the root exudates of Koshihikari rice seedlings (K32) at 32 °C reduced the number of total weeds by ≈60.0% and the total dry weight of weeds by 93.0%; i.e., to a greater extent than other root exudates. Among the 13 identified phenolic acids, p-hydroxybenzoic, vanillic, syringic, sinapic and benzoic acids—at concentrations of 0.360, 0.045, 3.052, 1.309 and 5.543 µg/mL might be involved in allelopathic responses of K32, inhibiting the growth of barnyardgrass and natural weeds. Findings of the present study may provide useful information on allelopathic responses of rice under environmental stresses and thus further understand of the competitive relationships between rice and weeds under natural conditions.

11.
Antioxidants (Basel) ; 6(2)2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28475126

RESUMO

In this study, different plant parts (barks, flowers, inner skins, kernels and leaves) of Castanea crenata (Japanese chestnut) were analyzed for total phenolic, flavonoid, and tannin contents. Antioxidant properties were evaluated by using 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), reducing power, and ß-carotene bleaching methods. The highest total phenolic and tannin contents were found in the inner skins (1034 ± 7.21 mg gallic acid equivalent/g extract and 253.89 ± 5.59 mg catechin equivalent/g extract, respectively). The maximum total flavonoid content was observed in the flowers (147.41 ± 1.61 mg rutin equivalent/g extract). The inner skins showed the strongest antioxidant activities in all evaluated assays. Thirteen phenolic acids and eight flavonoids were detected and quantified for the first time. Major phenolic acids were gallic, ellagic, sinapic, and p-coumaric acids, while the principal flavonoids were myricetin and isoquercitrin. The inner skin extract was further fractionated by column chromatography to yield four fractions, of which fraction F3 exhibited the most remarkable DPPH scavenging capacity. These results suggest that C. crenata provides promising antioxidant capacities, and is a potential natural preservative agent in food and pharmaceutical industries.

12.
Int J Genomics ; 2017: 9272363, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28265566

RESUMO

Next generation sequencing technologies have provided numerous opportunities for application in the study of whole plant genomes. In this study, we present the sequencing and bioinformatic analyses of five typical rice landraces including three indica and two japonica with potential blast resistance. A total of 688.4 million 100 bp paired-end reads have yielded approximately 30-fold coverage to compare with the Nipponbare reference genome. Among them, a small number of reads were mapped to both chromosomes and organellar genomes. Over two million and eight hundred thousand single nucleotide polymorphisms (SNPs) and insertions and deletions (InDels) in indica and japonica lines have been determined, which potentially have significant impacts on multiple transcripts of genes. SNP deserts, contiguous SNP-low regions, were found on chromosomes 1, 4, and 5 of all genomes of rice examined. Based on the distribution of SNPs per 100 kilobase pairs, the phylogenetic relationships among the landraces have been constructed. This is the first step towards revealing several salient features of rice genomes in Vietnam and providing significant information resources to further marker-assisted selection (MAS) in rice breeding programs.

13.
Antioxidants (Basel) ; 5(3)2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27649250

RESUMO

Phalaenopsis spp. is the most commercially and economically important orchid, but their plant parts are often left unused, which has caused environmental problems. To date, reports on phytochemical analyses were most available on endangered and medicinal orchids. The present study was conducted to determine the total phenolics, total flavonoids, and antioxidant activity of ethanol extracts prepared from leaves and roots of six commercial hybrid Phalaenopsis spp. Leaf extracts of "Chian Xen Queen" contained the highest total phenolics with a value of 11.52 ± 0.43 mg gallic acid equivalent per g dry weight and the highest total flavonoids (4.98 ± 0.27 mg rutin equivalent per g dry weight). The antioxidant activity of root extracts evaluated by DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging assay and ß-carotene bleaching method was higher than those of the leaf extracts. Eleven phenolic compounds were identified, namely, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, caffeic acid, syringic acid, vanillin, ferulic acid, sinapic acid, p-coumaric acid, benzoic acid, and ellagic acid. Ferulic, p-coumaric and sinapic acids were concentrated largely in the roots. The results suggested that the root extracts from hybrid Phalaenopsis spp. could be a potential source of natural antioxidants. This study also helps to reduce the amount of this orchid waste in industrial production, as its roots can be exploited for pharmaceutical purposes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA