Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 264: 118685, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33137369

RESUMO

BACKGROUND: Differentiation of bone marrow eosinophils (BM-EO) and its trafficking to peripheral blood and respiratory mucosa are a hallmark of inflammatory diseases. Staphylococcal enterotoxin B (SEB) has been shown to aggravate airways eosinophilic inflammation. This study aimed to investigate the effects of mouse airways SEB exposure on BM-EO population, as well as its adhesive properties and release of cytokines/chemokines that orchestrate BM-EO trafficking to lungs. METHODS: Male BALB/c mice were intranasally exposed to SEB (1 µg), and at 4, 16, 24 and 48 h thereafter, bone marrow (BM), circulating blood and bronchoalveolar lavage (BAL) fluid were collected. Levels of cytokines/chemokines and expressions of VLA-4 and CCR3 in BM were evaluated. Adhesion of BM to ICAM-1 and VCAM-1 were also evaluated. RESULTS: SEB exposure promoted a marked eosinophil influx to BAL at 16 and 24 h after exposure, which was accompanied by significant increases in counts of immature (16 h) and mature (4 to 48 h) forms of eosinophil in BM, along with blood eosinophilia (16 h). In BM, higher levels of eotaxin, IL-5, IL-4, IL-3 and IL-7 were detected at 16 to 48 h. SEB also significantly increased CCR3 expression and calcium levels in BM-EO, and enhanced the cell adhesion to ICAM-1 (24 h) and ICAM-1 (48 h). CONCLUSION: Airways SEB exposure increases the number of eosinophils in BM by mechanisms involving a network of cytokine and chemokine release, facilitating the BM-EO adhesion to ICAM-1 and VCAM-1 to gain access to the peripheral blood and lung tissues.


Assuntos
Administração Intranasal/métodos , Medula Óssea/metabolismo , Enterotoxinas/metabolismo , Eosinófilos/metabolismo , Pulmão/metabolismo , Absorção Nasal/fisiologia , Animais , Medula Óssea/microbiologia , Líquido da Lavagem Broncoalveolar/microbiologia , Enterotoxinas/administração & dosagem , Enterotoxinas/sangue , Eosinófilos/microbiologia , Pulmão/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Staphylococcus aureus/metabolismo
2.
Int Immunopharmacol ; 78: 106009, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31771815

RESUMO

BACKGROUND: The lung infections by Staphylococcus aureus are strongly associated with its ability to produce enterotoxins. However, little is known about the mechanisms underlying trafficking of bone marrow (BM) neutrophils during airway inflammation induced by Staphylococcal enterotoxin B (SEB). We therefore aimed to investigate the effects of mouse airways SEB exposure on BM neutrophil counts and its adhesive properties as well as on the release of cytokines/chemokines that orchestrate BM neutrophils trafficking to lung tissue. METHODS: Male BALB/c mice were intranasally exposed to SEB (1 µg), and at 4, 16 and 24 h thereafter, BM, circulating blood, bronchoalveolar lavage (BAL) fluid and lung tissue were collected. BM neutrophils adhesion, MAC-1 and LFA1-α expressions (by flow cytometry) as well as measurement of cytokine and/or chemokines levels were assayed after SEB-airway exposure. RESULTS: Prior exposure to SEB promoted a marked influx of neutrophils to BAL and lung tissue, which was accompanied by increased counts of BM immature neutrophils and blood neutrophilia. BM neutrophil expressions of LFA1-α and MAC-1 were unchanged by SEB exposure whereas a significant enhancement of adhesion properties to VCAM-1 was observed. The early phase of airway SEB exposure was accompanied by high levels of GM-CSF, G-CSF, IFN-γ, TNF-α and KC/CXCL1, while the latter phase by the equilibrated actions of SDF1-α and MIP-2. CONCLUSION: Mouse airways exposure to SEB induces BM cytokines/chemokines release and their integrated actions enhance the adhesion of BM neutrophils leading to acute lung injury.


Assuntos
Células da Medula Óssea/imunologia , Citocinas/metabolismo , Neutrófilos/imunologia , Pneumonia Estafilocócica/imunologia , Staphylococcus aureus/imunologia , Administração Intranasal , Animais , Medula Óssea/imunologia , Medula Óssea/patologia , Células da Medula Óssea/metabolismo , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/imunologia , Enterotoxinas/administração & dosagem , Enterotoxinas/imunologia , Humanos , Contagem de Leucócitos , Pulmão/citologia , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos , Infiltração de Neutrófilos/imunologia , Neutrófilos/metabolismo , Pneumonia Estafilocócica/microbiologia , Pneumonia Estafilocócica/patologia , Staphylococcus aureus/metabolismo
3.
Acta Physiol (Oxf) ; 217(3): 240-53, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27029505

RESUMO

AIM: The maternal environment during pregnancy and lactation plays a determining role in programming energy metabolism in offspring. Among a myriad of maternal factors, disruptions in the light/dark cycle during pregnancy can program glucose intolerance in offspring. Out-of-phase feeding has recently been reported to influence metabolism in adult humans and rodents; however, it is not known whether this environmental factor impacts offspring metabolism when applied during pregnancy and lactation. This study aims to determine whether maternal day-restricted feeding (DF) influences energy metabolism in offspring. METHODS: Pregnant and lactating Wistar rats were subjected to ad libitum (AL) or DF during pregnancy and lactation. The offspring born to the AL and DF dams were intra- and interfostered, which resulted in 4 group types. RESULTS: The male offspring born to and breastfed by the DF dams (DF/DF off) were glucose intolerant, but without parallel insulin resistance as adults. Experiments with isolated pancreatic islets demonstrated that the male DF/DF off rats had reduced insulin secretion with no parallel disruption in calcium handling. However, this reduction in insulin secretion was accompanied by increased miRNA-29a and miRNA34a expression and decreased syntaxin 1a protein levels. CONCLUSION: We conclude that out-of-phase feeding during pregnancy and lactation can lead to glucose intolerance in male offspring, which is caused by a disruption in insulin secretion capacity. This metabolic programming is possibly caused by mechanisms dependent on miRNA modulation of syntaxin 1a.


Assuntos
Restrição Calórica/efeitos adversos , Insulina/metabolismo , Lactação/fisiologia , Prenhez/metabolismo , Animais , Cálcio/metabolismo , Metabolismo Energético/fisiologia , Feminino , Intolerância à Glucose/metabolismo , Técnicas In Vitro , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Masculino , MicroRNAs/biossíntese , MicroRNAs/genética , NADP/metabolismo , Gravidez , Ratos , Ratos Wistar , Sintaxina 1/biossíntese , Sintaxina 1/genética
4.
Toxicol Appl Pharmacol ; 287(3): 267-75, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26091799

RESUMO

Pulmonary neutrophil infiltration produced by Staphylococcal enterotoxin A (SEA) airway exposure is accompanied by marked granulocyte accumulation in bone marrow (BM). Therefore, the aim of this study was to investigate the mechanisms of BM cell accumulation, and trafficking to circulating blood and lung tissue after SEA airway exposure. Male BALB/C mice were intranasally exposed to SEA (1µg), and at 4, 12 and 24h thereafter, BM, circulating blood, bronchoalveolar lavage (BAL) fluid and lung tissue were collected. Adhesion of BM granulocytes and flow cytometry for MAC-1, LFA1-α and VLA-4 and cytokine and/or chemokine levels were assayed after SEA-airway exposure. Prior exposure to SEA promoted a marked PMN influx to BAL and lung tissue, which was accompanied by increased counts of immature and/or mature neutrophils and eosinophils in BM, along with blood neutrophilia. Airway exposure to SEA enhanced BM neutrophil MAC-1 expression, and adhesion to VCAM-1 and/or ICAM-1-coated plates. Elevated levels of GM-CSF, G-CSF, INF-γ, TNF-α, KC/CXCL-1 and SDF-1α were detected in BM after SEA exposure. SEA exposure increased production of eosinopoietic cytokines (eotaxin and IL-5) and BM eosinophil VLA-4 expression, but it failed to affect eosinophil adhesion to VCAM-1 and ICAM-1. In conclusion, BM neutrophil accumulation after SEA exposure takes place by integrated action of cytokines and/or chemokines, enhancing the adhesive responses of BM neutrophils and its trafficking to lung tissues, leading to acute lung injury. BM eosinophil accumulation in SEA-induced acute lung injury may occur via increased eosinopoietic cytokines and VLA-4 expression.


Assuntos
Lesão Pulmonar Aguda/imunologia , Células da Medula Óssea/imunologia , Quimiotaxia de Leucócito , Enterotoxinas , Pulmão/imunologia , Infiltração de Neutrófilos , Neutrófilos/imunologia , Pneumonia/imunologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Células da Medula Óssea/metabolismo , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Adesão Celular , Moléculas de Adesão Celular/imunologia , Moléculas de Adesão Celular/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos Endogâmicos BALB C , Neutrófilos/metabolismo , Pneumonia/induzido quimicamente , Pneumonia/metabolismo , Pneumonia/patologia , Transdução de Sinais , Fatores de Tempo
5.
Mol Cell Endocrinol ; 370(1-2): 87-95, 2013 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-23462193

RESUMO

Glucose transporter GLUT4 protein, codified by Slc2a4 gene plays a key role in glycemic homeostasis. Insulin resistance, as in obesity, has been associated to inflammatory state, in which decreased GLUT4 is a feature. Inflammatory NF-κB transcriptional factor has been proposed as a repressor of Slc2a4; although, the binding site(s) in Slc2a4 promoter and the direct repressor effect have never been reported yet. A motif-based sequence analysis of mouse Slc2a4 promoter revealed two putative κB sites located inside -83/-62 and -134/-113 bp. Eletrophoretic mobility assay showed that p50 and p65 NF-κB subunits bind to both putative κB sites. Chromatin immunoprecipitation assay using genomic DNA from adipocytes confirmed p50- and p65-binding to Slc2a4 promoter. Moreover, transfection experiments revealed that NF-κB binds to the -134/-113bp region of the mouse Slc2a4 gene promoter, inhibiting the Slc2a4 gene transcription. The current findings demonstrate the existence of two κB sites in Slc2a4 gene promote, and that NF-κB has a direct repressor effect upon the Slc2a4 gene, providing an important link between insulin resistance and inflammation.


Assuntos
Transportador de Glucose Tipo 4/genética , Subunidade p50 de NF-kappa B/metabolismo , NF-kappa B/metabolismo , Regiões Promotoras Genéticas , Fator de Transcrição RelA/metabolismo , Células 3T3 , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Inflamação/genética , Resistência à Insulina/genética , Camundongos , Obesidade/genética , Ratos , Análise de Sequência de DNA , Transcrição Gênica
6.
J Pineal Res ; 44(1): 88-94, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18078453

RESUMO

Melatonin diminishes insulin release through the activation of MT1 receptors and a reduction in cAMP production in isolated pancreatic islets of neonate and adult rats and in INS-1 cells (an insulin-secreting cell line). The pancreas of pinealectomized rats exhibits degenerative pathological changes with low islet density, indicating that melatonin plays a role to ensure the functioning of pancreatic beta cells. By using immunoprecipitation and immunoblotting analysis we demonstrated, in isolated rat pancreatic islets, that melatonin induces insulin growth factor receptor (IGF-R) and insulin receptor (IR) tyrosine phosphorylation and mediates the activities of the PI3K/AKT and MEK/ERKs pathways, which are involved in cell survival and growth, respectively. Thus, the effects of melatonin on pancreatic islets do not involve a reduction in cAMP levels only. This indoleamine may regulate growth and differentiation of pancreatic islets by activating IGF-I and insulin receptor signaling pathways.


Assuntos
Fator de Crescimento Insulin-Like I/metabolismo , Ilhotas Pancreáticas/metabolismo , Melatonina/metabolismo , Receptor de Insulina/metabolismo , Receptor MT1 de Melatonina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Feminino , Técnicas In Vitro , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina , Secreção de Insulina , Sistema de Sinalização das MAP Quinases/fisiologia , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Receptor IGF Tipo 1/metabolismo , Fator de Transcrição STAT3/metabolismo
7.
Endocrinology ; 149(2): 717-24, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17962340

RESUMO

Mutations in Na(+)-glucose transporters (SGLT)-2 and hepatocyte nuclear factor (HNF)-1alpha genes have been related to renal glycosuria and maturity-onset diabetes of the young 3, respectively. However, the expression of these genes have not been investigated in type 1 and type 2 diabetes. Here in kidney of diabetic rats, we tested the hypotheses that SGLT2 mRNA expression is altered; HNF-1alpha is involved in this regulation; and glycemic homeostasis is a related mechanism. The in vivo binding of HNF-1alpha into the SGLT2 promoter region in renal cortex was confirmed by chromatin immunoprecipitation assay. SGLT2 and HNF-1alpha mRNA expression (by Northern and RT-PCR analysis) and HNF-1 binding activity of nuclear proteins (by EMSA) were investigated in diabetic rats and treated or not with insulin or phlorizin (an inhibitor of SGLT2). Results showed that diabetes increases SGLT2 and HNF-1alpha mRNA expression (~50%) and binding of nuclear proteins to a HNF-1 consensus motif (~100%). Six days of insulin or phlorizin treatment restores these parameters to nondiabetic-rat levels. Moreover, both treatments similarly reduced glycemia, despite the differences in plasma insulin and urinary glucose concentrations, highlighting the plasma glucose levels as involved in the observed modulations. This study shows that SGLT2 mRNA expression and HNF-1alpha expression and activity correlate positively in kidney of diabetic rats. It also shows that diabetes-induced changes are reversed by lowering glycemia, independently of insulinemia. Our demonstration that HNF-1alpha binds DNA that encodes SGLT2 supports the hypothesis that HNF-1alpha, as a modulator of SGLT2 expression, may be involved in diabetic kidney disease.


Assuntos
Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/fisiopatologia , Fator 1-alfa Nuclear de Hepatócito/genética , Rim/fisiologia , Transportador 2 de Glucose-Sódio/genética , Animais , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Nefropatias Diabéticas/tratamento farmacológico , Ensaio de Desvio de Mobilidade Eletroforética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Hiperglicemia/fisiopatologia , Hipoglicemiantes/farmacologia , Imunoprecipitação , Insulina/farmacologia , Masculino , Florizina/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Transportador 2 de Glucose-Sódio/metabolismo
8.
Horm Metab Res ; 36(7): 474-9, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15305231

RESUMO

We investigated the effects of pinealectomy on adipose tissue metabolism at different times of day. Adult male Wistar rats were divided into two groups: pinealectomized and control (sham-operated). Eight weeks after surgery, the animals were killed at three different times (at 8.00 a.m., at 4.00 p.m. and 11.00 p.m.). We collected blood samples for glucose, insulin, corticosterone, and leptin determinations, and periepididymal adipocytes for in vitro insulin-stimulated glucose uptake, oxidation, and incorporation into lipids. Pinealectomy caused insulin resistance as measured by 2-deoxyglucose uptake (a fall of approximately 40 % in the maximally insulin-stimulated rates) accompanied by hypercorticosteronemia at the three time points investigated without changes in plasma insulin an or leptin levels. Furthermore, pinealectomy increased the insulin-induced glucose incorporation into lipids (77 %) at 4.00 p.m. and insulin-induced glucose oxidation in the morning and in the afternoon, while higher rates were observed in the evening and in the morning in control rats. In conclusion, cell responsiveness to insulin was differentially affected by pineal ablation and time of day, and persistent insulin resistance was obtained in pinealectomized rats. We hypothesize that pinealectomy exposes the animal to an inadequate match between energy requirements and fuel mobilization.


Assuntos
Adipócitos/metabolismo , Ritmo Circadiano/fisiologia , Corticosterona/sangue , Resistência à Insulina/fisiologia , Glândula Pineal/fisiologia , Adipócitos/efeitos da radiação , Tecido Adiposo/metabolismo , Tecido Adiposo/efeitos da radiação , Análise de Variância , Animais , Glicemia/metabolismo , Peso Corporal/fisiologia , Peso Corporal/efeitos da radiação , Metabolismo Energético/fisiologia , Metabolismo Energético/efeitos da radiação , Insulina/sangue , Resistência à Insulina/efeitos da radiação , Leptina/sangue , Luz , Metabolismo dos Lipídeos , Masculino , Melatonina/fisiologia , Fotoperíodo , Ratos , Ratos Wistar , Receptor de Insulina/metabolismo , Receptor de Insulina/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA