Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Heliyon ; 10(7): e29202, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38623209

RESUMO

Limonia acidissima Groff, commonly referred to as the Wood apple, is a tropical fruit belonging to Rutaceae family. Indigenous to Sri Lanka, India, and Myanmar, it is extensively cultivated throughout Southeast Asia. This fruit holds a profound historical significance in traditional medicine due to its exceptional nutritional and therapeutic attributes. Wood apple pulp is significantly abundant in ß-carotene, a precursor to vitamin A, and contains a substantial amount of vitamin B, including riboflavin and thiamine, as well as trace amounts of ascorbic acid (vitamin C). Moreover health-benefitting properties associated with L. acidissima, such as, antioxidant, hepatoprotective, antimicrobial, neuroprotective, antidiabetic, anti-inflammatory, anti-spermatogenic, analgesic, antiulcer, and antihyperlipidemic properties, are attributed to a diverse range of phytochemicals. These encompass polyphenolic compounds, saponins, phytosterols, tannins, triterpenoids, coumarins, amino acids, tyramine derivatives, and vitamins. From the findings of the various studies, it was observed that wood apple fruit shows significant anticancer activity by inhibiting the proliferation of cancer. Furthermore, wood apple finds wide-ranging commercial applications in the formulation of ready-to-serve beverages, syrups, jellies, chutneys, and various other food products. In summary, this review highlights the nutritional and phytochemical constituents of wood apple, depicts its antioxidant, anti-inflammatory, and anti-diabetic capabilities, and explores its potential in value-added product development. Nevertheless, it is crucial to acknowledge that the molecular mechanisms supporting these properties remain an underexplored domain. To ensure the safe integration of wood apple fruit into the realms of the food, cosmetics, and pharmaceutical sectors, rigorous clinical trials, including toxicity assessments, are required. These endeavors hold the potential to promote innovation and contribute significantly to both research and industrial sectors.

2.
Int J Biol Macromol ; 261(Pt 2): 129456, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237828

RESUMO

Cotton stalk (CS) is a global agricultural residue, with an annual production of approximately 50 million tons, albeit with limited economic significance. The utilization of cellulose derived from CS has gained significant attention in green nanomaterial technologies. This interest stems from its unique properties, including biocompatibility, low density, minimal thermal expansion, eco-friendliness, renewability, and its potential as an alternative source for chemicals, petroleum, and biofuels. In this review, we delve into various extraction and characterization methods, the physicochemical attributes, recent advancements, and the applications of cellulose extracted from CS. Notably, the steam explosion method has proven to yield the highest cellulose content (82 %) from CS. Moreover, diverse physicochemical properties of cellulose can be obtained through different extraction techniques. Sulfuric acid hydrolysis, for instance, yields nanocrystalline cellulose fibers measuring 10-100 nm in width and 100-850 nm in length. Conversely, the steam explosion method yields cellulose fibers with dimensions of 10.7 µm in width and 1.2 mm in length. CS-derived products, including biochar, aerogel, dye adsorbents, and reinforcement fillers, find applications in various industries, such as environmental remediation and biodegradable packaging. This is primarily due to their ready availability, cost-effectiveness, and sustainable nature.


Assuntos
Celulose , Vapor , Celulose/química , Têxteis , Biotecnologia/métodos , Hidrólise
3.
Int J Biol Macromol ; 255: 128011, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37951444

RESUMO

Apple (Malus domestica) is a popular and ancient fruit of the Myrtaceae family. Apple fruit is well-known for its great nutritional and phytochemical content consisted of beneficial compounds such as polyphenols, polysaccharides, sterols, and organic acids. Polysaccharides extracted from different parts of the apple fruit, including the peel, pomace, or the whole fruit, have been extensively studied. Researchers have investigated the structural characteristics of these polysaccharides, such as molecular weight, type of monosaccharide unit, type of linkage and its position and arrangement. Besides this, functional properties and physicochemical and of apple polysaccharides have also been studied, along with the effects of extraction procedures, storage, and processing on cell wall polysaccharides. Various extraction techniques, including hot water extraction, enzymatic extraction, and solvent-assisted extraction, have been studied. From the findings, it was evident that apple polysaccharides are mainly composed of (1 â†’ 3), (1 â†’ 6): α-ß-glycosidic linkage. Moreover, the apple polysaccharides were demonstrated to exhibit antioxidant, hepatoprotective, anti-cancer, hypoilipidemic, and enzyme inhibitory properties in vitro and in vivo. The potential applications of apple polysaccharides in the food, cosmetic, pharmaceutical, nutraceutical industries have also been explored in the present review. Overall, the research on apple polysaccharides highlights their significant potential as a source of biologically active compounds with various health benefits and practical applications.


Assuntos
Malus , Malus/química , Frutas/química , Polissacarídeos/farmacologia , Polissacarídeos/análise , Antioxidantes/química , Polifenóis/análise
4.
3 Biotech ; 13(12): 397, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37974928

RESUMO

Glioma coined as a "butterfly" tumor associated with a dismal prognosis. Marine algal compounds with the richest sources of bioactive components act as significant anti-tumor therapeutics. However, there is a paucity of studies conducted on Fucoidan to enhance the anti-glioma efficacy of Temozolomide. Therefore, the present study aimed to evaluate the synergistic anti-proliferative, anti-inflammatory and pro-apoptotic effects of Fucoidan with Temozolomide in in vitro and in silico experimental setup. The anti-proliferative effects of Temozolomide and Fucoidan were evaluated on C6 glioma cells by MTT and migration assay. Modulation of inflammatory markers and apoptosis induction was affirmed at the morphological and transcriptional level by dual staining and gene expression. Molecular docking (MD) and molecular dynamics simulation (MDS) studies were performed against the targets to rationalize the inhibitory effect. The dual-drug combination significantly reduced the cell viability and migration of glioma cells in a synergistic dose-dependent manner. At the molecular level, the dual-drug combination significantly down-regulated inflammatory genes with a concomitant upregulation of pro-apoptotic marker. In consensus with our in vitro findings, molecular docking and simulation studies revealed that the anti-tumor ligands: Temozolomide, Fucoidan with 5-(3-Methy1-trizeno)-imidazole-4-carboxamide (MTIC), and 4-amino-5-imidazole-carboxamide (AIC) had the potency to bind to the inflammatory proteins at their active sites, mediated by H-bonds and other non-covalent interactions. The dual-drug combinatorial treatment synergistically inhibited the proliferation, migration of glioma cells and promoted apoptosis; conversely with the down-regulation of inflammatory genes. However, pre-clinical experimental evidence is warranted for the possible translation of this combination. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03814-6.

5.
J Indian Prosthodont Soc ; 23(3): 294-300, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37929369

RESUMO

Aim: The aim was to compare the efficacy of various herbal disinfectants on irreversible hydrocolloid impressions and to investigate the effectiveness of three herbal disinfectants and a chemical disinfectant against particular pathogens. Settings and Design: In vitro -a comparative study. Materials and Methods: The following methodology was followed to achieve the objectives. Four maxillary impressions were made for each selected patient with irreversible hydrocolloid impression material. The predisinfection swabs were taken from impression sites of teeth 17, 13, 27, and 23 (FDI system of tooth numbering). The impressions were immersed in all four different disinfectants such as 2% glutaraldehyde, Aloe vera solution, 50% neem oil, and apple vinegar solution, then the postdisinfection swabs were taken from the same sites 17,13,27,23 and then cultured onto sheep blood agar and examined for growth, and colony forming units (CFUs) of Streptococcus viridans, Streptococcus mutans, Streptococcus sanguis, and Actinomyces viscosus. The comparative analysis was done for the predisinfection and postdisinfection values in each study group. Statistical Analysis Used: Descriptive analysis, Kruskal Wallis test, Mann Whitney post hoc test, Wilcoxon signed rank test. Results: The results revealed that the mean CFUs of S. viridans, S. mutans, S. sanguis, and A. viscosus during postdisinfection samples were statistically significant when compared to predisinfection samples. Multiple comparison of the mean CFUs of all 4 microorganisms in the control group and in 50% Neem oil group was significantly lesser compared to A. vera and Apple Vinegar group. Conclusion: CFUs of S. viridans, S. mutans, S. sanguis, and A. viscosus significantly decreased in the 50% neem oil group as well as the control group. As a result, 50% Neem oil was a viable option for disinfecting alginate impressions.


Assuntos
Anti-Infecciosos , Desinfetantes , Humanos , Desinfetantes/farmacologia , Ácido Acético , Anti-Infecciosos/química , Coloides/química
6.
Heliyon ; 9(10): e20232, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37860517

RESUMO

Chrysanthemum is a flowering plant belonging to a genus of the dicotyledonous herbaceous annual flowering plant of the Asteraceae (Compositae) family. It is a perpetual flowering plant, mostly cultivated for medicinal purposes; generally, used in popular drinks due to its aroma and flavor. It is primarily cultivated in China, Japan, Europe, and United States. These flowers were extensively used in various healthcare systems and for treating various diseases. Chrysanthemum flowers are rich in phenolic compounds and exhibit strong properties including antioxidant, antimicrobial, anti-inflammatory, anticancer, anti-allergic, anti-obesity, immune regulation, hepatoprotective, and nephroprotective activities. The main aim of the present review was to investigate the nutritional profile, phytochemistry, and biological activities of flowers of different Chrysanthemum species. Also, a critical discussion of the diverse metabolites or bioactive constituents of the Chrysanthemum flowers is highlighted in the present review. Moreover, the flower extracts of Chrysanthemum have been assessed to possess a rich phytochemical profile, including compounds such as cyanidin-3-O-(6″-O-malonyl) glucoside, delphinidin 3-O-(6" -O-malonyl) glucoside-3', rutin, quercetin, isorhamnetin, rutinoside, and others. These profiles exhibit potential health benefits, leading to their utilization in the production of supplementary food products and pharmaceutical drugs within the industry. However, more comprehensive research studies/investigations are still needed to further discover the potential benefits for human and animal utilization.

7.
Front Plant Sci ; 14: 1182867, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37287715

RESUMO

Groundnut productivity and quality have been impeded by rising temperatures in semi-arid environments. Hence, understanding the effects and molecular mechanisms of heat stress tolerance will aid in tackling yield losses. In this context, a recombinant inbred line (RIL) population was developed and phenotyped for eight seasons at three locations for agronomic, phenological, and physiological traits under heat stress. A genetic map was constructed using genotyping-by-sequencing with 478 single-nucleotide polymorphism (SNP) loci spanning a map distance of 1,961.39 cM. Quantitative trait locus (QTL) analysis using phenotypic and genotypic data identified 45 major main-effect QTLs for 21 traits. Intriguingly, three QTL clusters (Cluster-1-Ah03, Cluster-2-Ah12, and Cluster-3-Ah20) harbor more than half of the major QTLs (30/45, 66.6%) for various heat tolerant traits, explaining 10.4%-38.6%, 10.6%-44.6%, and 10.1%-49.5% of phenotypic variance, respectively. Furthermore, important candidate genes encoding DHHC-type zinc finger family protein (arahy.J0Y6Y5), peptide transporter 1 (arahy.8ZMT0C), pentatricopeptide repeat-containing protein (arahy.4A4JE9), Ulp1 protease family (arahy.X568GS), Kelch repeat F-box protein (arahy.I7X4PC), FRIGIDA-like protein (arahy.0C3V8Z), and post-illumination chlorophyll fluorescence increase (arahy.92ZGJC) were the underlying three QTL clusters. The putative functions of these genes suggested their involvement in seed development, regulating plant architecture, yield, genesis and growth of plants, flowering time regulation, and photosynthesis. Our results could provide a platform for further fine mapping, gene discovery, and developing markers for genomics-assisted breeding to develop heat-tolerant groundnut varieties.

8.
Front Pharmacol ; 14: 1096614, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025487

RESUMO

Glioma is the most devastating high-grade tumor of the central nervous system, with dismal prognosis. Existing treatment modality does not provide substantial benefit to patients and demands novel strategies. One of the first-line treatments for glioma, temozolomide, provides marginal benefit to glioma patients. Repurposing of existing non-cancer drugs to treat oncology patients is gaining momentum in recent years. In this study, we investigated the therapeutic benefits of combining three repurposed drugs, namely, metformin (anti-diabetic) and epigallocatechin gallate (green tea-derived antioxidant) together with temozolomide in a glioma-induced xenograft rat model. Our triple-drug combination therapy significantly inhibited tumor growth in vivo and increased the survival rate (50%) of rats when compared with individual or dual treatments. Molecular and cellular analyses revealed that our triple-drug cocktail treatment inhibited glioma tumor growth in rat model through ROS-mediated inactivation of PI3K/AKT/mTOR pathway, arrest of the cell cycle at G1 phase and induction of molecular mechanisms of caspases-dependent apoptosis.In addition, the docking analysis and quantum mechanics studies performed here hypothesize that the effect of triple-drug combination could have been attributed by their difference in molecular interactions, that maybe due to varying electrostatic potential. Thus, repurposing metformin and epigallocatechin gallate and concurrent administration with temozolomide would serve as a prospective therapy in glioma patients.

9.
Int J Biol Macromol ; 229: 463-475, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36563821

RESUMO

Human awareness of the need for health and wellness practices that enhance disease resilience has increased as a result of recent health risks. Plant-derived polysaccharides with biological activity are good candidates to fight diseases because of their low toxicity. Tinospora cordifolia (Willd.) Hook.f. & Thomson polysaccharides extract from different plant parts have been reported to possess significant biological activity such as anti-oxidant, anti-cancer, immunomodulatory, anti-diabetic, radioprotective and hepatoprotective. Several extraction and purification techniques have been used to isolate and characterize T. cordifolia polysaccharides. Along with hot-water extraction (HWE), other novel techniques like microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), pulsed electric field (PEF), supercritical-fluid extraction (SFE), and enzyme-assisted extraction (EAE) are used to extract T cordifolia polysaccharides. SFE is a revolutionary technology that gives the best yield and purity of low-molecular-weight polysaccharides. According to the findings, polysaccharides extracted and purified from T. cordifolia have a significant impact on their structure and biological activity. As a result, the methods of extraction, structural characterization, and biological activity of T. cordifolia polysaccharides are covered in this review. Research on T. cordifolia polysaccharides and their potential applications will benefit greatly from the findings presented in this review.


Assuntos
Tinospora , Humanos , Tinospora/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antioxidantes/farmacologia , Antioxidantes/química , Polissacarídeos/farmacologia
11.
Int J Biol Macromol ; 219: 1047-1061, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-35914557

RESUMO

Allium cepa (onion) and Allium sativum (garlic) are important members of the Amaryllidaceae (Alliaceae) family and are being used both as food and medicine for centuries in different parts of the world. Polysaccharides have been extracted from different parts of onion and garlic such as bulb, straw and cell wall. The current literature portrays several studies on the extraction of polysaccharides from onion and garlic, their modification and determination of their structural (molecular weight, monosaccharide unit and their arrangement, type and position of glycosidic bond or linkage, degree of polymerization, chain conformation) and functional properties (emulsifying property, moisture retention, hygroscopicity, thermal stability, foaming ability, fat-binding capacity). In this line, this review, summarizes the various extraction techniques used for polysaccharides from onion and garlic, involving methods like solvent extraction method. Furthermore, the antioxidant, anticancer, immunomodulatory, antimicrobial, anti-inflammatory, and antidiabetic properties of onion and garlic polysaccharides as reported in in vivo and in vitro studies are also critically assessed in this review. Different studies have proved onion and garlic polysaccharides as potential antioxidant and immunomodulatory agent. Studies have implemented to improve the functionality of onion and garlic polysaccharides through various modification approaches. Further studies are warranted for utilizing onion and garlic polysaccharides in the food, nutraceutical, pharmaceutical and cosmetic industries.


Assuntos
Anti-Infecciosos , Alho , Antioxidantes/farmacologia , Alho/química , Hipoglicemiantes , Monossacarídeos , Cebolas/química , Preparações Farmacêuticas , Polissacarídeos/química , Polissacarídeos/farmacologia , Solventes
12.
Comput Intell Neurosci ; 2022: 3289809, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35965768

RESUMO

Coronavirus took the world by surprise and caused a lot of trouble in all the important fields in life. The complexity of dealing with coronavirus lies in the fact that it is highly infectious and is a novel virus which is hard to detect with exact precision. The typical detection method for COVID-19 infection is the RT-PCR but it is a rather expensive method which is also invasive and has a high margin of error. Radiographies are a good alternative for COVID-19 detection given the experience of the radiologist and his learning capabilities. To make an accurate detection from chest X-Rays, deep learning technologies can be involved to analyze the radiographs, learn distinctive patterns of coronavirus' presence, find these patterns in the tested radiograph, and determine whether the sample is actually COVID-19 positive or negative. In this study, we propose a model based on deep learning technology using Convolutional Neural Networks and training it on a dataset containing a total of over 35,000 chest X-Ray images, nearly 16,000 for COVID-19 positive images, 15,000 for normal images, and 5,000 for pneumonia-positive images. The model's performance was assessed in terms of accuracy, precision, recall, and F1-score, and it achieved 99% accuracy, 0.98 precision, 1.02 recall, and 99.0% F1-score, thus outperforming other deep learning models from other studies.


Assuntos
COVID-19 , Aprendizado Profundo , Pneumonia , COVID-19/diagnóstico por imagem , Humanos , Redes Neurais de Computação , Raios X
13.
ACS Appl Bio Mater ; 5(6): 2741-2753, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35608933

RESUMO

Imminent prospects of clinical importance have been accomplished through divergent treatment modalities implemented using nanoscale platforms. In the present study, hydroxyapatite nanoparticles doped with copper nanoclusters (HAPs) were explored for codelivery of a hydrophobic drug, namely, norfloxacin (NX), and a hydrophilic photosensitizer, such as methylene blue (MB). NX and MB were successfully homed into HAPs (MB-NX-HAPs), which further exhibited a pH-dependent release of both. With the objective of attaining an enhanced effect, MB-NX-HAPs were evaluated for combination therapy, involving chemotherapy and photodynamic therapy (PDT) with irradiation at 640 nm. The combinatorial therapy approach was initially applied for antibacterial therapy, which suggested a considerable reduction in bacterial growth of Gram-negative strain Pseudomonas aeruginosa MTCC 2488. Thereafter, the antiproliferative study performed in cancer cell lines (HeLa and MCF-7) revealed the efficiency of MB-NX-HAPs in bestowing a combinatorial effect through chemotherapy and PDT (irradiation at 640 nm). The combined effect exerted through MB-NX-HAPs subsequently induced reactive oxygen species (ROS) generation, cell cycle alteration, and apoptosis activation in cancer cells. The biocompatible nature of MB-NX-HAPs was appreciably shown through their minimal effect on the normal cell line (HEK-293). Additionally, HAPs through luminescence of copper nanoclusters were suggested to aid in bioimaging of cancer cell lines.


Assuntos
Luminescência , Nanopartículas , Cobre/uso terapêutico , Durapatita , Células HEK293 , Humanos , Azul de Metileno/farmacologia , Nanopartículas/uso terapêutico
14.
Life Sci ; 301: 120609, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35526592

RESUMO

AIMS: Malignant gliomas constitute one of the deadly brain tumors with high degeneration rate. Though temozolomide (TMZ) is the first-line drug for glioma, its efficacy has decreased due to chemo-resistance. Repurposing synthetic and natural compounds have gained increasing interest in glioma. Hence, we combined chloroquine (CHL) a synthetic drug, naringenin (NAR) and phloroglucinol (PGL) (natural derivatives), to investigate whether the apoptotic effect of these drugs both alone and in combination, enhances the anti-tumor effects of TMZ in an in vitro and in vivo orthotopic xenograft glioma model. MAIN METHODS: The cytotoxic effect of the drugs was assessed in C6 (murine) glioma cells, U-87 MG and LN229 (human) glioblastoma cells, primary astrocytes (isolated from rat brain tissues) and HEK-293 T cells. Mitochondrial depolarization and alterations in the cell cycle was determined by confocal imaging and flow cytometry. The expression of angiogenic and apoptotic markers was evaluated using qRT-PCR and ELISA. The efficacy of the combinatorial treatment was assessed in an orthotopic xenograft model using U-87 MG cells. KEY FINDINGS: The combinatorial treatment inhibited cell proliferation, induced apoptosis and contributed to cell cycle arrest in glioma cells. The quadruple combinatorial cocktail down-regulated BCL-2 with a concomitant decrease in VEGF. As observed in vitro, the quadruple combinatorial treatment enhanced the median survival of glioma-induced rats with lower cellularity rate. SIGNIFICANCE: The combination of CHL, NAR and PGL synergistically potentiated the efficacy of TMZ on glioma in vitro and in vivo. Hence, this combination may characterize an advanced strategy for glioma treatment, thereby providing a possible translation to clinical trial.


Assuntos
Neoplasias Encefálicas , Glioma , Animais , Antineoplásicos Alquilantes/farmacologia , Apoptose , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioma/patologia , Células HEK293 , Humanos , Camundongos , Ratos , Temozolomida/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Cell Signal ; 95: 110350, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35525406

RESUMO

Glioblastoma multiforme is one of the calamitous primary glial brain tumors with extensive heterogeneity at cellular and molecular levels. While maximal surgical resection trailed by radio and chemotherapy employing temozolomide remains the gold-standard treatment for malignant glioma patients, the overall prognosis remains dismal and there exists an unmet need for effective therapeutic strategies. In this context, we hypothesize that proper understanding of signaling pathways responsible for glioblastoma multiforme proliferation would be the first trump card while searching for novel targeted therapies. Among the pathways aberrantly activated, PI3K/AKT/mTOR is the most significant pathway, that is clinically implicated in malignancies such as high-grade glioma. Further, the WNT/ß-Catenin cascade is well-implicated in several malignancies, while its role in regulating glioma pathogenesis has only emerged recently. Nevertheless, oncogenic activation of both these pathways is a frequent event in malignant glioma that facilitates tumor proliferation, stemness and chemo-resistance. Recently, it has been reported that the cross-talk of PI3K/AKT/mTOR pathway with multiple signaling pathways could promote glioma progression and reduce the sensitivity of glioma cells to the standard therapy. However, very few studies had focused on the relationship between PI3K/AKT/mTOR and WNT/ß-Catenin pathways in glioblastoma multiforme. Interestingly, in homeostatic and pathologic circumstances, both these pathways depict fine modulation and are connected at multiple levels by upstream and downstream effectors. Thus, gaining deep insights on the collusion between these pathways would help in discovering unique therapeutic targets for glioblastoma multiforme management. Hence, the current review aims to address, "the importance of inter-play between PI3K/AKT/mTOR and WNT/ß-Catenin pathways", and put forward, "the possibility of combinatorially targeting them", for glioblastoma multiforme treatment enhancement.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Terapia Combinada , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/terapia , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo
16.
Int J Biol Macromol ; 209(Pt A): 763-778, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35421412

RESUMO

Owing to numerous biological activities of different parts of Moringa oleifera Lam., various studies have been carried out to isolate and explore the activities of its various bioactive compounds including polysaccharides. Polysaccharides of M. oleifera have been reported to possess a variety of biofunctionalities including antihyperlipidemic, anti-diabetic, immunomodulatory, antihypertensive and gastrointestinal protection. In addition to bioactive polysaccharides, the gum exudated by stem of this plant is of commercial importance with wide range of applications in pharmaceutical industries. Various extraction and purification methods as well as combination of methods have been used to isolate and purify moringa polysaccharides. Studies suggest that extraction methods influence the structure of polysaccharides and thus their biological activity. This review summarizes all the available literature to provide updated information related to extraction, purification, modification, structural characterization, bioactivities and potential applications of moringa polysaccharides. This review will provide novel insights for future research and applications of moringa polysaccharides.


Assuntos
Moringa oleifera , Moringa , Antioxidantes/química , Moringa oleifera/química , Extratos Vegetais/química , Folhas de Planta/química , Polissacarídeos/análise , Polissacarídeos/farmacologia
17.
Food Chem ; 386: 132694, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35334323

RESUMO

Guava processing industries generate peel and seeds as primary waste fractions. Guava seeds obtained after fruit processing possess untapped potential in the field of food science due to the presence of a diversity of nutritional and bioactive compounds. Along with offering a detailed understanding of the nutritional attributes of guava seeds, the present review comprehensively elaborates on the therapeutic activities of their bioactive compounds, their techno-functional properties, and their other edible and nonedible applications. The limited molecular and biochemical mechanistic studies outlining the antioxidant, immunomodulatory, anticancer, antimicrobial, neuroprotective and antidiabetic activities of guava seeds available in the literature are also extensively discussed in this review. The use of guava seed constituents as food additives and food functional and structural modulators, primarily as fat reducers, emulsifiers, water and oil holding agents, is also conceptually explained. Additional human intervention and molecular mechanistic studies deciphering the effects of guava seeds on various diseases and human health are warranted.


Assuntos
Psidium , Antioxidantes/análise , Indústria Alimentícia , Frutas/química , Humanos , Psidium/química , Sementes/química
18.
J Healthc Eng ; 2022: 1601354, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222876

RESUMO

Glaucoma is the second most common cause for blindness around the world and the third most common in Europe and the USA. Around 78 million people are presently living with glaucoma (2020). It is expected that 111.8 million people will have glaucoma by the year 2040. 90% of glaucoma is undetected in developing nations. It is essential to develop a glaucoma detection system for early diagnosis. In this research, early prediction of glaucoma using deep learning technique is proposed. In this proposed deep learning model, the ORIGA dataset is used for the evaluation of glaucoma images. The U-Net architecture based on deep learning algorithm is implemented for optic cup segmentation and a pretrained transfer learning model; DenseNet-201 is used for feature extraction along with deep convolution neural network (DCNN). The DCNN approach is used for the classification, where the final results will be representing whether the glaucoma infected or not. The primary objective of this research is to detect the glaucoma using the retinal fundus images, which can be useful to determine if the patient was affected by glaucoma or not. The result of this model can be positive or negative based on the outcome detected as infected by glaucoma or not. The model is evaluated using parameters such as accuracy, precision, recall, specificity, and F-measure. Also, a comparative analysis is conducted for the validation of the model proposed. The output is compared to other current deep learning models used for CNN classification, such as VGG-19, Inception ResNet, ResNet 152v2, and DenseNet-169. The proposed model achieved 98.82% accuracy in training and 96.90% in testing. Overall, the performance of the proposed model is better in all the analysis.


Assuntos
Aprendizado Profundo , Glaucoma , Disco Óptico , Fundo de Olho , Glaucoma/diagnóstico por imagem , Humanos , Redes Neurais de Computação , Disco Óptico/diagnóstico por imagem
19.
Biomed Pharmacother ; 146: 112498, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34953395

RESUMO

Huge quantities of byproducts/wastes generated in onion processing are usually discarded, but they are excellent sources of bioactive compounds and phytochemicals. However, with growing interest in the sustainable use of resources and the circular economy to reduce adverse impacts on the environment, food processing wastes such as onion peel/skin can be extracted and employed as inputs in developing or reformulating nutrient supplements, and pharmacological drugs. This review highlights major bioactive components, especially total phenolics, total flavonoid, quercetin and its derivatives present in onion peel/skin and their therapeutic applications as cardioprotective, neuroprotective, antiobesity, antidiabetic, anticancer and antimicrobial agents. The present review emphasized that onion peel is one of the important agricultural by-products which is rich in bioactive compounds and can be utilized as health promoting ingredient especially in pharmacological and biomedical fields. Thus, with increasing burden of life style disorders/non-communicable diseases, finding suitable natural alternative for their treatment is one major concern of the researchers and onion peel and its extract can be exploited as a prime ingredient.


Assuntos
Cebolas/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Anti-Infecciosos/farmacologia , Fármacos Antiobesidade/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Cardiotônicos/farmacologia , Flavonoides/farmacologia , Hipoglicemiantes/farmacologia , Fármacos Neuroprotetores/farmacologia , Fenóis/farmacologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-34795782

RESUMO

Citrus fruits such as oranges, grapefruits, lemons, limes, tangerines, and mandarins, whose production is increasing every year with the rise of consumer demand, are among the most popular fruits cultivated throughout the globe. Citrus genus belongs to the Rutaceae family and is known for its beneficial effects on health for centuries. These plant groups contain many beneficial nutrients and bioactive compounds. These compounds have antimicrobial, anticancer, antidiabetic, antiplatelet aggregation, and anti-inflammatory activities. Citrus waste, generated by citrus-processing industries in large amounts every year, has an important economic value due to richness of bioactive compounds. The present review paper has summarized the application and properties of Citrus and its waste in some fields such as food and drinks, traditional medicine practices, and recent advances in modern approaches towards pharmaceutical and nutraceutical formulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA