RESUMO
Bipolar disorder is a heritable mental illness with complex etiology. We performed a genome-wide association study of 41,917 bipolar disorder cases and 371,549 controls of European ancestry, which identified 64 associated genomic loci. Bipolar disorder risk alleles were enriched in genes in synaptic signaling pathways and brain-expressed genes, particularly those with high specificity of expression in neurons of the prefrontal cortex and hippocampus. Significant signal enrichment was found in genes encoding targets of antipsychotics, calcium channel blockers, antiepileptics and anesthetics. Integrating expression quantitative trait locus data implicated 15 genes robustly linked to bipolar disorder via gene expression, encoding druggable targets such as HTR6, MCHR1, DCLK3 and FURIN. Analyses of bipolar disorder subtypes indicated high but imperfect genetic correlation between bipolar disorder type I and II and identified additional associated loci. Together, these results advance our understanding of the biological etiology of bipolar disorder, identify novel therapeutic leads and prioritize genes for functional follow-up studies.
Assuntos
Transtorno Bipolar/genética , Estudo de Associação Genômica Ampla , Estudos de Casos e Controles , Cromossomos Humanos/genética , Predisposição Genética para Doença , Genoma Humano , Humanos , Complexo Principal de Histocompatibilidade/genética , Herança Multifatorial/genética , Fenótipo , Locos de Características Quantitativas/genética , Fatores de RiscoRESUMO
OBJECTIVE: More than 90% of people who attempt suicide have a psychiatric diagnosis; however, twin and family studies suggest that the genetic etiology of suicide attempt is partially distinct from that of the psychiatric disorders themselves. The authors present the largest genome-wide association study (GWAS) on suicide attempt, using cohorts of individuals with major depressive disorder, bipolar disorder, and schizophrenia from the Psychiatric Genomics Consortium. METHODS: The samples comprised 1,622 suicide attempters and 8,786 nonattempters with major depressive disorder; 3,264 attempters and 5,500 nonattempters with bipolar disorder; and 1,683 attempters and 2,946 nonattempters with schizophrenia. A GWAS on suicide attempt was performed by comparing attempters to nonattempters with each disorder, followed by a meta-analysis across disorders. Polygenic risk scoring was used to investigate the genetic relationship between suicide attempt and the psychiatric disorders. RESULTS: Three genome-wide significant loci for suicide attempt were found: one associated with suicide attempt in major depressive disorder, one associated with suicide attempt in bipolar disorder, and one in the meta-analysis of suicide attempt in mood disorders. These associations were not replicated in independent mood disorder cohorts from the UK Biobank and iPSYCH. No significant associations were found in the meta-analysis of all three disorders. Polygenic risk scores for major depression were significantly associated with suicide attempt in major depressive disorder (R2=0.25%), bipolar disorder (R2=0.24%), and schizophrenia (R2=0.40%). CONCLUSIONS: This study provides new information on genetic associations and demonstrates that genetic liability for major depression increases risk for suicide attempt across psychiatric disorders. Further collaborative efforts to increase sample size may help to robustly identify genetic associations and provide biological insights into the etiology of suicide attempt.
Assuntos
Transtorno Bipolar/genética , Transtorno Depressivo Maior/genética , Herança Multifatorial/genética , Esquizofrenia/genética , Tentativa de Suicídio , Transtorno Bipolar/psicologia , Estudos de Casos e Controles , Transtorno Depressivo Maior/psicologia , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Fatores de RiscoRESUMO
Bipolar disorder is a highly heritable psychiatric disorder. We performed a genome-wide association study (GWAS) including 20,352 cases and 31,358 controls of European descent, with follow-up analysis of 822 variants with P < 1 × 10-4 in an additional 9,412 cases and 137,760 controls. Eight of the 19 variants that were genome-wide significant (P < 5 × 10-8) in the discovery GWAS were not genome-wide significant in the combined analysis, consistent with small effect sizes and limited power but also with genetic heterogeneity. In the combined analysis, 30 loci were genome-wide significant, including 20 newly identified loci. The significant loci contain genes encoding ion channels, neurotransmitter transporters and synaptic components. Pathway analysis revealed nine significantly enriched gene sets, including regulation of insulin secretion and endocannabinoid signaling. Bipolar I disorder is strongly genetically correlated with schizophrenia, driven by psychosis, whereas bipolar II disorder is more strongly correlated with major depressive disorder. These findings address key clinical questions and provide potential biological mechanisms for bipolar disorder.
Assuntos
Transtorno Bipolar/genética , Loci Gênicos , Transtorno Bipolar/classificação , Estudos de Casos e Controles , Transtorno Depressivo Maior/genética , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Transtornos Psicóticos/genética , Esquizofrenia/genética , Biologia de SistemasRESUMO
BACKGROUND: Bipolar affective disorder (BPD) is a severe mood disorder with a prevalence of â¼1.5% in the population. The pathogenesis of BPD is poorly understood; however, a strong heritable component has been identified. Previous genome-wide association studies have indicated a region on 6q25, coding for the SYNE1 gene, which increases disease susceptibility. SYNE1 encodes the synaptic nuclear envelope protein-1, nesprin-1. A brain-specific splice variant of SYNE1, CPG2 encoding candidate plasticity gene 2, has been identified. The intronic single-nucleotide polymorphism with the strongest genome-wide significant association in BPD, rs9371601, is present in both SYNE1 and CPG2. METHODS: We screened 937 BPD samples for genetic variation in SYNE1 exons 14-33, which covers the CPG2 region, using high-resolution melt analysis. In addition, we screened two regions of increased transcriptional activity, one of them proposed to be the CPG2 promoter region. RESULTS AND CONCLUSION: We identified six nonsynonymous and six synonymous variants. We genotyped three rare nonsynonymous variants, rs374866393, rs148346599 and rs200629713, in a total of 1099 BPD samples and 1056 controls. Burden analysis of these rare variants did not show a significant association with BPD. However, nine patients are compound heterozygotes for variants in SYNE1/CPG2, suggesting that rare coding variants may contribute significantly towards the complex genetic architecture underlying BPD. Imputation analysis in our own whole-genome sequencing sample of 99 BPD individuals identified an additional eight risk variants in the CPG2 region of SYNE1.
Assuntos
Transtorno Bipolar/genética , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Transtorno Bipolar/metabolismo , Estudos de Casos e Controles , Estudos de Coortes , Proteínas do Citoesqueleto , Éxons , Feminino , Frequência do Gene , Predisposição Genética para Doença , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Polimorfismo de Nucleotídeo Único , Isoformas de ProteínasRESUMO
OBJECTIVES: Genetic markers in the genes encoding ankyrin 3 (ANK3) and the α-calcium channel subunit (CACNA1C) are associated with bipolar disorder (BP). The associated variants in the CACNA1C gene are mainly within intron 3 of the gene. ANK3 BP-associated variants are in two distinct clusters at the ends of the gene, indicating disease allele heterogeneity. METHODS: In order to screen both coding and non-coding regions to identify potential aetiological variants, we used whole-genome sequencing in 99 BP cases. Variants with markedly different allele frequencies in the BP samples and the 1,000 genomes project European data were genotyped in 1,510 BP cases and 1,095 controls. RESULTS: We found that the CACNA1C intron 3 variant, rs79398153, potentially affecting an ENCyclopedia of DNA Elements (ENCODE)-defined region, showed an association with BP (p = 0.015). We also found the ANK3 BP-associated variant rs139972937, responsible for an asparagine to serine change (p = 0.042). However, a previous study had not found support for an association between rs139972937 and BP. The variants at ANK3 and CACNA1C previously known to be associated with BP were not in linkage disequilibrium with either of the two variants that we identified and these are therefore independent of the previous haplotypes implicated by genome-wide association. CONCLUSIONS: Sequencing in additional BP samples is needed to find the molecular pathology that explains the previous association findings. If changes similar to those we have found can be shown to have an effect on the expression and function of ANK3 and CACNA1C, they might help to explain the so-called 'missing heritability' of BP.
Assuntos
Anquirinas/genética , Transtorno Bipolar/genética , Canais de Cálcio Tipo L/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Feminino , Frequência do Gene , Estudos de Associação Genética , Genótipo , Humanos , Íntrons/genética , Desequilíbrio de Ligação , Masculino , População BrancaRESUMO
Most psychiatric disorders are moderately to highly heritable. The degree to which genetic variation is unique to individual disorders or shared across disorders is unclear. To examine shared genetic etiology, we use genome-wide genotype data from the Psychiatric Genomics Consortium (PGC) for cases and controls in schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD). We apply univariate and bivariate methods for the estimation of genetic variation within and covariation between disorders. SNPs explained 17-29% of the variance in liability. The genetic correlation calculated using common SNPs was high between schizophrenia and bipolar disorder (0.68 ± 0.04 s.e.), moderate between schizophrenia and major depressive disorder (0.43 ± 0.06 s.e.), bipolar disorder and major depressive disorder (0.47 ± 0.06 s.e.), and ADHD and major depressive disorder (0.32 ± 0.07 s.e.), low between schizophrenia and ASD (0.16 ± 0.06 s.e.) and non-significant for other pairs of disorders as well as between psychiatric disorders and the negative control of Crohn's disease. This empirical evidence of shared genetic etiology for psychiatric disorders can inform nosology and encourages the investigation of common pathophysiologies for related disorders.
Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Transtornos Mentais/genética , Polimorfismo de Nucleotídeo Único , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno Bipolar/genética , Criança , Transtornos Globais do Desenvolvimento Infantil/genética , Doença de Crohn/genética , Transtorno Depressivo Maior/genética , Heterogeneidade Genética , Genoma Humano , Humanos , Padrões de Herança , Esquizofrenia/genéticaRESUMO
IMPORTANCE: Genetic markers at the gene encoding the metabotropic glutamate receptor 3 (GRM3) showed allelic association with bipolar disorder. OBJECTIVE: To screen the GRM3 gene and adjacent control regions of genomic DNA in volunteers with bipolar affective disorder for mutations increasing susceptibility to bipolar disorder. DESIGN: Sequencing and high-resolution melting curve analysis of DNA followed by genotyping was carried out in 1099 patients with bipolar affective disorder and 1152 healthy comparator individuals. SETTING: Participants with bipolar disorder were recruited from National Health Service psychiatric services and from patient organizations. PARTICIPANTS: Individuals were included if they had Research Diagnostic Criteria diagnoses of bipolar I and bipolar II disorder and were of British or Irish ancestry. MAIN OUTCOMES AND MEASURES: Identification of base pair changes in the GRM3 gene that affected expression or function of the GRM3 receptor that also showed an allelic association with bipolar disorder. RESULTS: A base pair variant (rs148754219) was found in the Kozak sequence of exon 1 of the GRM3 gene, 2 bases before the translation start codon of one of the receptor isoforms, in 23 of 2251 people who were screened and genotyped. Nineteen of the 1099 bipolar cases (1.7%) were mutation carriers compared with 4 of 1152 healthy comparators (0.3%). The variant was associated with bipolar disorder (P = .005; odds ratio, 4.20). Bioinformatic, electrophoretic mobility shift assay, and gene expression analysis found that the variant created a new transcription factor protein binding site and had a strong effect on gene transcription and translation. CONCLUSIONS AND RELEVANCE: Confirmation of these findings is needed before the Kozak sequence variant can be accepted as a potential marker for personalized treatment of affective disorders with drugs targeting the metabotropic glutamate receptor 3.
Assuntos
Transtorno Bipolar/genética , Receptores de Glutamato Metabotrópico/genética , Alelos , Pareamento Incorreto de Bases/genética , Estudos de Casos e Controles , Ensaio de Desvio de Mobilidade Eletroforética , Estudos de Associação Genética , Genótipo , Heterozigoto , Humanos , Polimorfismo de Nucleotídeo Único/genética , Reação em Cadeia da Polimerase em Tempo RealRESUMO
Significant association between polymorphisms at the ANK3 gene with bipolar disorder has previously been reported and confirmed in several samples. Here we report on association between ANK3 and bipolar disorder in a new sample of 593 patients and 642 controls (UCL2) as well as the results of sequencing of the exons and flanking regions of ANK3 from bipolar patients. Single nucleotide polymorphisms (SNPs) associated with bipolar disorder in our original GWA study (UCL1) were genotyped and tested for association in the new sample. Novel SNPs found by sequencing were genotyped in both samples to test for association with bipolar disorder. None of the SNPs previously associated with bipolar disorder were associated in the UCL2 sample. One of the four SNPs associated in the UCL1 sample, rs1938526, was still significantly associated with bipolar disorder when the UCL1 and UCL2 samples were combined (P = 0.0095). The results demonstrate the impact of heterogeneity on replication of allelic associations even within well-defined ancestral populations. DNA sequencing revealed a novel low frequency (0.007) ANK3 SNP (ss469104599) which causes a non-conservative amino acid change at position 794 in the shorter isoforms of the ankyrin G protein. Protein-function analysis software predicted the amino acid change to be "probably damaging" and it could therefore be detrimental to the function of this isoform. Given that there was only a modest increase in the allele frequency of ss469104599 in cases compared to controls further association studies are needed in additional samples to establish a possible etiological role for this amino acid change.
Assuntos
Aminoácidos/genética , Anquirinas/genética , Transtorno Bipolar/genética , Sequência Conservada/genética , Predisposição Genética para Doença , Análise de Sequência de DNA , Alelos , Frequência do Gene/genética , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem , Humanos , Polimorfismo de Nucleotídeo Único/genética , Isoformas de Proteínas/genéticaRESUMO
OBJECTIVES: Alcoholism and affective disorders are both strongly comorbid and heritable. We have investigated the genetic comorbidity between bipolar affective disorder and alcoholism. METHODS: A genome-wide allelic association study of 506 patients from the University College London bipolar disorder case-control sample and 510 ancestrally matched supernormal controls. One hundred forty-three of the bipolar patients fulfilled the Research Diagnostic Criteria diagnosis of alcoholism. A total of 372 193 single nucleotide polymorphisms (SNPs) were genotyped. Genes previously shown to be associated with alcoholism and addiction phenotypes were then tested for association in the bipolar alcoholic sample using gene-wise permutation tests of all SNPs genotyped within a 50-kb region flanking each gene. RESULTS: Several central nervous system genes showed significant (P<0.05) gene-wise evidence of association with bipolar alcoholism. The genes implicated, which replicated genes previously shown to be associated with alcoholism were: cadherin 11, collagen type 11 α2, neuromedin U receptor 2, exportin7, and semaphorin-associated protein 5A. The SNPs most strongly implicated in bipolar alcoholism, but, which did not meet conventional genome-wide significance criteria were the insulin-like growth factor-binding protein 7, carboxypeptidase O, cerebellin 2, and the cadherin 12 genes. CONCLUSION: We have confirmed the role of some genes previously shown to be associated with alcoholism in the comorbid bipolar alcoholism subgroup. In this subgroup, bipolar disorder may lower the threshold for the phenotypic expression of these alcoholism susceptibility genes. We also show that some genes may independently increase susceptibility to affective disorder and alcoholism.
Assuntos
Alcoolismo/epidemiologia , Alcoolismo/genética , Transtorno Bipolar/epidemiologia , Transtorno Bipolar/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Caderinas/genética , Estudos de Casos e Controles , Comorbidade , Feminino , Marcadores Genéticos , Humanos , Londres/epidemiologia , Masculino , Polimorfismo de Nucleotídeo Único/genética , Reprodutibilidade dos TestesRESUMO
Insulin-like growth factor 1 (IGF1) has been shown to have an important role in brain development and function. Studies of IGF1 administration in rodents have shown that it has an anxiolytic and antidepressant effect. A genome-wide association study (GWAS) of the first University College London (UCL) cohort of 506 bipolar affective disorder subjects and 510 controls was carried out. The exons and flanking regions of IGF1 were resequenced, any new polymorphisms found were genotyped in an enlarged UCL sample of 937 cases and 941 controls. GWAS data gave good evidence of allelic and haplotypic association between multiple IGF1 SNP's and bipolar disorder (BD). New polymorphisms were found by resequencing IGF1 region. Data from GWAS and the new markers showed that twelve out of 43 SNPs showed association with BD with the four most significant SNPs having values of 3.7 × 10(-5) , 8.4 × 10(-4) , 2.6 × 10(-4) , and 2.5 × 10(-4) . A 5' promoter microsatellite polymorphism previously correlated with plasma lipoprotein concentration was also associated with BD (P = 0.013). Haplotypic association confirmed association with BD with significance values similar to the single marker SNP values. The marker rs12426318 has also been found to be associated with BD in a second sample. A test of gene wide significance with permutation testing for all markers genotyped at IGF1 was also significant. These data implicate IGF1 as a candidate gene to cause genetic susceptibility to BD.
Assuntos
Transtorno Bipolar/genética , Predisposição Genética para Doença , Fator de Crescimento Insulin-Like I/genética , Polimorfismo de Nucleotídeo Único , Alelos , Estudos de Casos e Controles , Mapeamento Cromossômico/estatística & dados numéricos , Estudos de Coortes , Éxons , Marcadores Genéticos , Estudo de Associação Genômica Ampla/métodos , Genótipo , Haplótipos , Humanos , Londres , Repetições de MicrossatélitesRESUMO
Genetic deletions and duplications known as copy number variants have been strongly implicated in genetic susceptibility to schizophrenia, autism, attention deficit hyperactivity disorder and epilepsy. The overall rate of copy number variants in the University College London (UCL) bipolar disorder sample was found to be slightly lower than the rate in controls. This finding confirms the results from other studies that have also shown no increased rate of copy number variants in bipolar disorder. However, some rare duplications and deletions were observed only in bipolar disorder cases and not in controls, these included some that had previously been detected only in rare cases of bipolar disorder. We conclude that copy-number variant analysis shows no obvious sharing of the same genetic susceptibility between schizophrenia and bipolar disorder. Copy number variants do not seem to have an important role in susceptibility to bipolar disorder, they may, however, still represent a rare cause of the disease, although the evidence for this is far from clear.
Assuntos
Transtorno Bipolar/genética , Variações do Número de Cópias de DNA , Predisposição Genética para Doença , Humanos , Polimorfismo de Nucleotídeo Único , Esquizofrenia/genética , Reino UnidoRESUMO
OBJECTIVE: There are theoretical reasons why comparing marker allele frequencies between cases of different diseases, rather than with controls, may offer benefits. The samples may be better matched, especially for background risk factors common to both diseases. Genetic loci may also be detected which influence which of the two diseases occurs if common risk factors are present. METHOD: We used samples of UK bipolar and schizophrenic cases that had earlier been subject to genome-wide association studies and compared marker allele frequencies between the two samples. When these differed for a marker, we compared the case sample allele frequencies with those of a control sample. RESULTS: Eight markers were significant at P value of less than 10(-5). Of these, the most interesting finding was for rs17645023, which was significant at P value of less than 10(-6) and which lies 36 kb from CACNG5. Control allele frequencies for this marker were intermediate between those for bipolar and schizophrenic cases. CONCLUSION: The application of this approach suggests that it does have some merits. The finding for CACNG5, taken together with the earlier implication of CACNA1C and CACNA1B, strongly suggests a key role for voltage-dependent calcium channel genes in the susceptibility to bipolar disorder and/or schizophrenia.
Assuntos
Transtorno Bipolar/genética , Canais de Cálcio/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Esquizofrenia/genética , Estudos de Casos e Controles , Estudos de Coortes , Marcadores Genéticos , HumanosRESUMO
BACKGROUND: Recent studies have reported large common regions of homozygosity (ROHs) that are the result of autozygosity, that is, the cooccurrence within individuals of long haplotypes that have a high frequency in the population. A recent study reports that such regions are found more commonly in individuals with schizophrenia compared with controls, and identified nine 'risk ROHs' that were individually more common in cases. Of these, four contained or neighboured genes associated with schizophrenia (NOS1AP/UHMK1, ATF2, NSF and PIK3C3). METHODS: We have applied the same methodology to a UK sample of 506 cases with bipolar disorder and 510 controls. RESULTS: There was no overall excess of common ROHs among bipolar individuals. With one exception, the haplotypes accounting for the ROHs appeared to be distributed according to the Hardy-Weinberg equilibrium. One ROH was individually more common among cases (uncorrected P = 0.0003). This ROH spanned the chromosome 2p23.3 gene ITSN2 (the gene for intersectin 2 isoform 2). However, inspection of the homozygous haplotypes and haplotype-based tests for association failed to provide a clearer understanding of why this ROH was occurring more commonly. CONCLUSION: Overall, we conclude that, in contrast with schizophrenia, common ROHs are rarely associated with susceptibility to bipolar disorder. This supports the idea that predominantly different genes are increasing susceptibility to schizophrenia and bipolar affective disorders.
Assuntos
Transtorno Bipolar/genética , Homozigoto , Estudos de Casos e Controles , Haplótipos , Heterozigoto , HumanosRESUMO
To identify susceptibility loci for bipolar disorder, we tested 1.8 million variants in 4,387 cases and 6,209 controls and identified a region of strong association (rs10994336, P = 9.1 x 10(-9)) in ANK3 (ankyrin G). We also found further support for the previously reported CACNA1C (alpha 1C subunit of the L-type voltage-gated calcium channel; combined P = 7.0 x 10(-8), rs1006737). Our results suggest that ion channelopathies may be involved in the pathogenesis of bipolar disorder.