Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 106(5-1): 054215, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36559373

RESUMO

The statistical properties of wave chaotic systems of varying dimensionalities and realizations have been studied extensively. These systems are commonly characterized by the statistics of the eigenmode spacings and the statistics of the eigenfunctions. Here, we propose photonic crystal (PC) defect waveguide graphs as a physical setting for chaotic graph studies. Photonic crystal waveguides possess a dispersion relation for the propagating modes, which is engineerable. Graphs constructed by joining these waveguides possess junctions and bends with distinct scattering properties. We present numerically determined statistical properties of an ensemble of such PC graphs including both eigenfunction amplitude and eigenmode-spacing studies. Our proposed system is compatible with silicon nanophotonic technology and opens chaotic graph studies to a new community of researchers.

2.
Phys Rev E ; 105(5-1): 054210, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35706202

RESUMO

We identify the poles and zeros of the scattering matrix of a simple quantum graph by means of systematic measurement and analysis of Wigner, transmission, and reflection complex time delays. We examine the ring graph because it displays both shape and Feshbach resonances, the latter of which arises from an embedded eigenstate on the real frequency axis. Our analysis provides a unified understanding of the so-called shape, Feshbach, electromagnetically induced transparency, and Fano resonances on the basis of the distribution of poles and zeros of the scattering matrix in the complex frequency plane. It also provides a first-principles understanding of sharp resonant scattering features and associated large time delay in a variety of practical devices, including photonic microring resonators, microwave ring resonators, and mesoscopic ring-shaped conductor devices. Our analysis involves use of the reflection time difference, as well as a comprehensive use of complex time delay, to analyze experimental scattering data.

3.
Phys Rev E ; 105(4-1): 044202, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35590567

RESUMO

Strong nonlinearity of a self-resonant radio-frequency (rf) superconducting-quantum-interference-device (SQUID) meta-atom is explored via intermodulation (IM) measurements. Previous work in zero dc magnetic flux showed a sharp onset of IM response as the frequency sweeps through the resonance. A second onset at higher frequency was also observed, creating a prominent gap in the IM response. By extending those measurements to nonzero dc flux, different dynamics are revealed, including dc flux tunability of the aforementioned gaps and enhanced IM response near geometric resonance of the rf SQUID. These features observed experimentally are understood and analyzed theoretically through a combination of a steady-state analytical modeling and a full numerical treatment of the rf SQUID dynamics. The latter in addition predicts the presence of chaos in narrow parameter regimes. The understanding of intermodulation in rf SQUID metamaterials is important for producing low-noise amplification of microwave signals and tunable filters.

4.
Phys Rev Lett ; 127(20): 204101, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34860068

RESUMO

We study the statistical properties of the complex generalization of Wigner time delay τ_{W} for subunitary wave-chaotic scattering systems. We first demonstrate theoretically that the mean value of the Re[τ_{W}] distribution function for a system with uniform absorption strength η is equal to the fraction of scattering matrix poles with imaginary parts exceeding η. The theory is tested experimentally with an ensemble of microwave graphs with either one or two scattering channels and showing broken time-reversal invariance and variable uniform attenuation. The experimental results are in excellent agreement with the developed theory. The tails of the distributions of both real and imaginary time delay are measured and are also found to agree with theory. The results are applicable to any practical realization of a wave-chaotic scattering system in the short-wavelength limit, including quantum wires and dots, acoustic and electromagnetic resonators, and quantum graphs.

5.
Phys Rev E ; 103(5): L050203, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34134212

RESUMO

We introduce a complex generalization of the Wigner time delay τ for subunitary scattering systems. Theoretical expressions for complex time delays as a function of excitation energy, uniform and nonuniform loss, and coupling are given. We find very good agreement between theory and experimental data taken on microwave graphs containing an electronically variable lumped-loss element. We find that the time delay and the determinant of the scattering matrix share a common feature in that the resonant behavior in Re[τ] and Im[τ] serves as a reliable indicator of the condition for coherent perfect absorption (CPA). By reinforcing the concept of time delays in lossy systems this work provides a means to identify the poles and zeros of the scattering matrix from experimental data. The results also enable an approach to achieving CPA at an arbitrary frequency in complex scattering systems.

6.
Nat Commun ; 12(1): 2644, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976162

RESUMO

Chiral superconductors have been proposed as one pathway to realize Majorana normal fluid at its boundary. However, the long-sought 2D and 3D chiral superconductors with edge and surface Majorana normal fluid are yet to be conclusively found. Here, we report evidence for a chiral spin-triplet pairing state of UTe2 with surface normal fluid response. The microwave surface impedance of the UTe2 crystal was measured and converted to complex conductivity, which is sensitive to both normal and superfluid responses. The anomalous residual normal fluid conductivity supports the presence of a significant normal fluid response. The superfluid conductivity follows the temperature behavior predicted for an axial spin-triplet state, which is further narrowed down to a chiral spin-triplet state with evidence of broken time-reversal symmetry. Further analysis excludes trivial origins for the observed normal fluid response. Our findings suggest that UTe2 can be a new platform to study exotic topological excitations in higher dimension.

7.
Nat Commun ; 11(1): 5826, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203847

RESUMO

Wavefront shaping (WFS) schemes for efficient energy deposition in weakly lossy targets is an ongoing challenge for many classical wave technologies relevant to next-generation telecommunications, long-range wireless power transfer, and electromagnetic warfare. In many circumstances these targets are embedded inside complicated enclosures which lack any type of (geometric or hidden) symmetry, such as complex networks, buildings, or vessels, where the hypersensitive nature of multiple interference paths challenges the viability of WFS protocols. We demonstrate the success of a general WFS scheme, based on coherent perfect absorption (CPA) electromagnetic protocols, by utilizing a network of coupled transmission lines with complex connectivity that enforces the absence of geometric symmetries. Our platform allows for control of the local losses inside the network and of the violation of time-reversal symmetry via a magnetic field; thus establishing CPA beyond its initial concept as the time-reversal of a laser cavity, while offering an opportunity for better insight into CPA formation via the implementation of semiclassical tools.

8.
Phys Rev E ; 101(3-1): 033306, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32289922

RESUMO

We apply time-dependent Ginzburg-Landau (TDGL) numerical simulations to study the finite frequency electrodynamics of superconductors subjected to an intense rf magnetic field. Much recent TDGL work has focused on spatially uniform external magnetic fields and largely ignores the Meissner state screening response of the superconductor. In this paper, we solve the TGDL equations for a spatially nonuniform magnetic field created by a point magnetic dipole in the vicinity of a semi-infinite superconductor. A two-domain simulation is performed to accurately capture the effect of the inhomogeneous applied fields and the resulting screening currents. The creation and dynamics of vortex semiloops penetrating deep into the superconductor domain are observed and studied, and the resulting third-harmonic nonlinear response of the sample is calculated. The effect of pointlike defects on vortex semi-loop behavior is also studied. This simulation method will assist our understanding of the limits of superconducting response to intense rf magnetic fields.

9.
Phys Rev E ; 101(2-1): 022201, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32168697

RESUMO

The statistics of the scattering of waves inside single ray-chaotic enclosures have been successfully described by the random coupling model (RCM). We expand the RCM to systems consisting of multiple complex ray-chaotic enclosures with various coupling scenarios. The statistical properties of the model-generated quantities are tested against measured data of electrically large multicavity systems of various designs. The statistics of model-generated transimpedance and induced voltages on a load impedance agree well with the experimental results. The RCM coupled chaotic enclosure model is general and can be applied to other physical systems, including coupled quantum dots, disordered nanowires, and short-wavelength electromagnetic and acoustic propagation through rooms in buildings, aircraft, and ships.

10.
Rev Sci Instrum ; 90(4): 043901, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31043012

RESUMO

We present a new measurement method which can be used to image the gap nodal structure of superconductors whose pairing symmetry is under debate. This technique utilizes a high quality factor microwave resonance involving the sample of interest. While supporting a circularly symmetric standing wave current pattern, the sample is perturbed by a scanned laser beam, creating a photoresponse that was previously shown to reveal the superconducting gap anisotropy. Simulation and the measurement of the photoresponse of an unpatterned Nb film show less than 8% anisotropy, as expected for a superconductor with a nearly isotropic energy gap along with expected systematic uncertainty. On the other hand, measurement of a YBa2Cu3O7-δ thin film shows a clear 4-fold symmetric image with ∼12.5% anisotropy, indicating the well-known 4-fold symmetric dx2-y2 gap nodal structure in the ab-plane. The deduced gap nodal structure can be further cross-checked by low temperature surface impedance data, which are simultaneously measured. The important advantage of the presented method over the previous spiral resonator method is that it does not require a complicated lithographic patterning process which limits one from testing various kinds of materials due to photoresponse arising from patterning defects. This advantage of the presented technique, and the ability to measure unpatterned samples such as planar thin films and single crystals, enables one to survey the pairing symmetry of a wide variety of unconventional superconductors.

11.
Chaos ; 29(3): 033113, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30927849

RESUMO

The Random Coupling Model (RCM) is a statistical approach for studying the scattering properties of linear wave chaotic systems in the semi-classical regime. Its success has been experimentally verified in various over-moded wave settings, including both microwave and acoustic systems. It is of great interest to extend its use in nonlinear systems. This paper studies the impact of a nonlinear port on the measured statistical electromagnetic properties of a ray-chaotic complex enclosure in the short wavelength limit. A Vector Network Analyzer is upgraded with a high power option, which enables calibrated scattering (S) parameter measurements up to +43dBm. By attaching a diode to the excitation antenna, amplitude-dependent S-parameters and Wigner reaction matrix (impedance) statistics are observed. We have systematically studied how the key components in the RCM are affected by this nonlinear port, including the radiation impedance, short ray orbit corrections, and statistical properties. By applying the newly developed radiation efficiency extension to the RCM, we find that the diode admittance increases with the excitation amplitude. This reduces the amount of power entering the cavity through the port so that the diode effectively acts as a protection element. As a result, we have developed a quantitative understanding of the statistical scattering properties of a semi-classical wave chaotic system with a nonlinear coupling channel.

12.
Phys Rev B ; 100(22)2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34136735

RESUMO

Low-temperature electrical and thermal transport, magnetic penetration depth, and heat capacity measurements were performed on single crystals of the actinide superconductor UTe2 to determine the structure of the superconducting energy gap. Heat transport measurements performed with currents directed along both crystallographic a and b axes reveal a vanishingly small residual fermionic component of the thermal conductivity. The magnetic field dependence of the residual term follows a rapid, quasilinear increase consistent with the presence of nodal quasiparticles, rising toward the a-axis upper critical field where the Wiedemann-Franz law is recovered. Together with a quadratic temperature dependence of the magnetic penetration depth up to T/T c = 0.3, these measurements provide evidence for an unconventional spin-triplet superconducting order parameter with point nodes. Millikelvin specific heat measurements performed on the same crystals used for thermal transport reveal an upturn below 300 mK that is well described by a divergent quantum-critical contribution to the density of states (DOS). Modeling this contribution with a T -1/3 power law allows restoration of the full entropy balance in the superconducting state and a resultant cubic power law for the electronic DOS below T c , consistent with the point-node gap structure determined by thermal conductivity and penetration depth measurements.

13.
Phys Rev E ; 97(6-1): 062220, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30011560

RESUMO

The Random Coupling Model (RCM) predicts the statistical properties of waves inside a ray-chaotic enclosure in the semiclassical regime by using Random Matrix Theory, combined with system-specific information. Experiments on single cavities are in general agreement with the predictions of the RCM. It is now desired to test the RCM on more complex structures, such as a cascade or network of coupled cavities, that represent realistic situations but that are difficult to test due to the large size of the structures of interest. This paper presents an experimental setup that replaces a cubic-meter-scale microwave cavity with a miniaturized cavity, scaled down by a factor of 20 in each dimension, operated at a frequency scaled up by a factor of 20 and having wall conductivity appropriately scaled up by a factor of 20. We demonstrate experimentally that the miniaturized cavity maintains the statistical wave properties of the larger cavity. This scaled setup opens the opportunity to study wave properties in large structures such as the floor of an office building, a ship, or an aircraft, in a controlled laboratory setting.

14.
Chaos ; 27(10): 103114, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29092435

RESUMO

Concepts from the field of wave chaos have been shown to successfully predict the statistical properties of linear electromagnetic fields in electrically large enclosures. The Random Coupling Model (RCM) describes these properties by incorporating both universal features described by Random Matrix Theory and the system-specific features of particular system realizations. In an effort to extend this approach to the nonlinear domain, we add an active nonlinear frequency-doubling circuit to an otherwise linear wave chaotic system, and we measure the statistical properties of the resulting second harmonic fields. We develop an RCM-based model of this system as two linear chaotic cavities coupled by means of a nonlinear transfer function. The harmonic field strengths are predicted to be the product of two statistical quantities and the nonlinearity characteristics. Statistical results from measurement-based calculation, RCM-based simulation, and direct experimental measurements are compared and show good agreement over many decades of power.

15.
Phys Rev E ; 95(5-1): 050201, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28618480

RESUMO

Through experiments and numerical simulations we explore the behavior of rf SQUID (radio frequency superconducting quantum interference device) metamaterials, which show extreme tunability and nonlinearity. The emergent electromagnetic properties of this metamaterial are sensitive to the degree of coherent response of the driven interacting SQUIDs. Coherence suffers in the presence of disorder, which is experimentally found to be mainly due to a dc flux gradient. We demonstrate methods to recover the coherence, specifically by varying the coupling between the SQUID meta-atoms and increasing the temperature or the amplitude of the applied rf flux.

17.
Sci Rep ; 6: 34166, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27682974

RESUMO

We have experimentally studied the dispersion of optical conductivity in few-layer graphene through reflection spectroscopy at visible wavelengths. A laser scanning microscope (LSM) with a supercontinuum laser source measured the frequency dependence of the reflectance of exfoliated graphene flakes, including monolayer, bilayer and trilayer graphene, loaded on a Si/SiO2 Fabry-Pérot resonator in the 545-700 nm range. The complex refractive index of few-layer graphene, n - ik, was extracted from the reflectance contrast to the bare substrate. It was found that each few-layer graphene possesses a unique dispersionless optical index. This feature indicates that the optical conductivity does not simply scale with the number of layers, and that inter-layer electrodynamics are significant at visible energies.

18.
Phys Rev E ; 93(5): 052205, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27300878

RESUMO

Time-reversal methods are widely used to achieve wave focusing in acoustics and electromagnetics. Past time-reversal experiments typically require that a transmitter be initially present at the target focusing point, which limits the application of this technique. In this paper, we propose a method to focus waves at an arbitrary location inside a complex enclosure using a numerically calculated wave excitation signal. We use a semiclassical ray algorithm to calculate the signal that would be received at a transceiver port resulting from the injection of a short pulse at the desired target location. The time-reversed version of this signal is then injected into the transceiver port, and an approximate reconstruction of the short pulse is created at the target. The quality of the pulse reconstruction is quantified in three different ways, and the values of these metrics are shown to be predicted by the statistics of the scattering parameter |S_{21}|^{2} between the transceiver and target points in the enclosure over the bandwidth of the pulse. We demonstrate the method experimentally using a flat microwave billiard, and we quantify the reconstruction quality as a function of enclosure loss, port coupling, and other considerations.

19.
Rev Sci Instrum ; 84(3): 034706, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23556836

RESUMO

We introduce an improved microwave calibration method for use in a cryogenic environment, based on a traditional three-standard calibration, the Thru-Reflect-Line (TRL) calibration. The modified calibration method takes advantage of additional information from multiple measurements of an ensemble of realizations of a superconducting resonator, as a new pseudo-Open standard, to correct errors in the TRL calibration. We also demonstrate an experimental realization of this in situ broadband cryogenic calibration system utilizing cryogenic switches. All calibration measurements are done in the same thermal cycle as the measurement of the resonator (requiring only an additional 20 min), thus avoiding 4 additional thermal cycles for traditional TRL calibration (which would require an additional 12 days). The experimental measurements on a wave-chaotic microwave billiard verify that the new method significantly improves the measured scattering matrix of a high-quality-factor superconducting resonator.

20.
Phys Rev Lett ; 110(8): 087002, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23473189

RESUMO

We have directly imaged the anisotropic nonlinear Meissner effect in an unconventional superconductor through the nonlinear electrodynamic response of both (bulk) gap nodes and (surface) Andreev bound states. A superconducting thin film is patterned into a compact self-resonant spiral structure, excited near resonance in the radio-frequency range, and scanned with a focused laser beam perturbation. At low temperatures, direction-dependent nonlinearities in the reactive and resistive properties of the resonator create photoresponse that maps out the directions of nodes, or of bound states associated with these nodes, on the Fermi surface of the superconductor. The method is demonstrated on the nodal superconductor YBa2Cu3O7-δ and the results are consistent with theoretical predictions for the bulk and surface contributions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA