Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Org Lett ; 24(5): 1219-1223, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35084871

RESUMO

Comparative analyses of four anthraquinone-fused enediyne biosynthetic gene clusters (BGCs) identified YpmL as a cytochrome P450 enzyme unique to the yangpumicin (YPM) BGC. In vitro characterization of YpmL established it as a hydroxylase, catalyzing C-6 hydroxylation in YPM A biosynthesis. In vivo application of YpmL enabled engineered production of four new tiancimycin analogues (14-17). Evaluation of their cytotoxicity against selected human cancer cell lines shed new insights into the enediyne structure-activity relationship.


Assuntos
Antraquinonas , Proteínas de Bactérias , Sistema Enzimático do Citocromo P-450 , Antraquinonas/química , Antraquinonas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Conformação Molecular , Estereoisomerismo , Streptomyces/enzimologia
2.
ACS Chem Biol ; 16(7): 1172-1178, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34138533

RESUMO

Tiancimycin (TNM) A belongs to the anthraquinone-fused subfamily of enediyne natural products, and selected enediynes have been translated into clinical drugs. Previously, inactivation of tnmL in Streptomyces sp. CB03234 resulted in the accumulation of TNM B and TNM E, supporting the functional assignment of TnmL as a cytochrome P450 hydroxylase that catalyzes A-ring modification in TNM A biosynthesis. Herein, we report in vitro characterization of TnmL, revealing that (i) TnmL catalyzes two successive hydroxylations of TNM E, resulting in sequential production of TNM F and TNM C, (ii) TnmL shows a strict substrate preference, with the C-26 side chain playing a critical role in substrate binding, and (iii) TnmL demethylates the C-7 OCH3 group of TNM G, affording TNM F, thereby channeling the shunt product TNM G back into TNM A biosynthesis and representing a rare proofreading logic for natural product biosynthesis. These findings shed new insights into anthraquinone-fused enediyne biosynthesis.


Assuntos
Antraquinonas/metabolismo , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Enedi-Inos/metabolismo , Antraquinonas/química , Proteínas de Bactérias/química , Biocatálise , Sistema Enzimático do Citocromo P-450/química , Enedi-Inos/química , Hidroxilação , Streptomyces/enzimologia , Especificidade por Substrato
3.
J Med Chem ; 64(8): 5185-5197, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33851832

RESUMO

Bombinins are a wide family of antimicrobial peptides from Xenopus skin. By sequence clustering, we highlighted at least three families named A, B, and H, which might exert antibacterial activity by different modes of action. In this work, we study bombinin-like peptide 3 (BLP-3) as a nonhemolytic representative of the quite unexplored class A due to its appealing activity toward WHO-priority-list bacteria such as Neisseria, Pseudomonas aeruginosa, and Staphylococcus aureus. A marked preference for cardiolipin and phosphatidylglycerol head groups, typically found in bacteria, is proven with biomimetic membranes studied by liquid and solid NMR and MD simulations. BLP-3 gets structured upon interaction and penetrates deeply into the bilayer in two steps involving a superficial insertion of key side chains and subsequent internalization. All along the pathway, a fundamental role is played by lysine residues in the conserved region 11-19, which act in synergy with other key residues.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Materiais Biomiméticos/metabolismo , Bicamadas Lipídicas/metabolismo , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/classificação , Materiais Biomiméticos/química , Bicamadas Lipídicas/química , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Filogenia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Pele/metabolismo , Xenopus/metabolismo
4.
Molecules ; 25(18)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937952

RESUMO

Glycosylation is a common and widespread post-translational modification that affects a large majority of proteins. Of these, a small minority, about 20, are specifically modified by the addition of heparan sulfate, a linear polysaccharide from the glycosaminoglycan family. The resulting molecules, heparan sulfate proteoglycans, nevertheless play a fundamental role in most biological functions by interacting with a myriad of proteins. This large functional repertoire stems from the ubiquitous presence of these molecules within the tissue and a tremendous structural variety of the heparan sulfate chains, generated through both biosynthesis and post synthesis mechanisms. The present review focusses on how proteoglycans are "gagosylated" and acquire structural complexity through the concerted action of Golgi-localized biosynthesis enzymes and extracellular modifying enzymes. It examines, in particular, the possibility that these enzymes form complexes of different modes of organization, leading to the synthesis of various oligosaccharide sequences.


Assuntos
Complexo de Golgi/metabolismo , Proteoglicanas de Heparan Sulfato/biossíntese , Heparitina Sulfato/metabolismo , Animais , Membrana Celular/metabolismo , Matriz Extracelular/metabolismo , Glicosaminoglicanos/metabolismo , Glicosilação , Proteoglicanas de Heparan Sulfato/química , Humanos , Mutação , Oligossacarídeos/química , Biossíntese de Proteínas , Domínios Proteicos , Processamento de Proteína Pós-Traducional
5.
J Med Chem ; 63(15): 8432-8441, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32658465

RESUMO

The enediynes are among the most cytotoxic molecules known, and their use as anticancer drugs has been successfully demonstrated by targeted delivery. Clinical advancement of the anthraquinone-fused enediynes has been hindered by their low titers and lack of functional groups to enable the preparation of antibody-drug conjugates (ADCs). Here we report biochemical and structural characterization of TnmH from the tiancimycin (TNM) biosynthetic pathway, revealing that (i) TnmH catalyzes regiospecific methylation at the C-7 hydroxyl group, (ii) TnmH exhibits broad substrate promiscuity toward hydroxyanthraquinones and S-alkylated SAM analogues and catalyzes efficient installation of reactive alkyl handles, (iii) the X-ray crystal structure of TnmH provides the molecular basis to account for its broad substrate promiscuity, and (iv) TnmH as a biocatalyst enables the development of novel conjugation strategies to prepare antibody-TNM conjugates. These findings should greatly facilitate the construction and evaluation of antibody-TNM conjugates as next-generation ADCs for targeted chemotherapy.


Assuntos
Proteínas de Bactérias/metabolismo , Enedi-Inos/metabolismo , Imunoconjugados/metabolismo , Metiltransferases/metabolismo , Streptomyces/metabolismo , Proteínas de Bactérias/química , Biocatálise , Vias Biossintéticas , Cristalografia por Raios X , Enedi-Inos/química , Imunoconjugados/química , Metiltransferases/química , Modelos Moleculares , Conformação Proteica , Streptomyces/química , Especificidade por Substrato
6.
Life Sci Alliance ; 2(6)2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31740563

RESUMO

Antimicrobial peptides (AMPs) are part of the innate immune response to pathogens in all of the kingdoms of life. They have received significant attention because of their extraordinary variety of activities, in particular, as candidate drugs against the threat of super-bacteria. A systematic study of the relation between the sequence and the mechanism of action is urgently needed, given the thousands of sequences already in multiple web resources. ADAPTABLE web platform (http://gec.u-picardie.fr/adaptable) introduces the concept of "property alignment" to create families of property and sequence-related peptides (SR families). This feature provides the researcher with a tool to select those AMPs meaningful to their research from among more than 40,000 nonredundant sequences. Selectable properties include the target organism and experimental activity concentration, allowing selection of peptides with multiple simultaneous actions. This is made possible by ADAPTABLE because it not only merges sequences of AMP databases but also merges their data, thereby standardizing values and handling non-proteinogenic amino acids. In this unified platform, SR families allow the creation of peptide scaffolds based on common traits in peptides with similar activity, independently of their source.


Assuntos
Anti-Infecciosos/química , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos/farmacologia , Sequência de Aminoácidos , Anti-Infecciosos/classificação , Peptídeos Catiônicos Antimicrobianos/classificação , Bactérias/metabolismo , Bases de Dados Factuais , Bases de Dados de Proteínas
7.
Org Lett ; 20(18): 5918-5921, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30212211

RESUMO

Comparative analyses of the four known anthraquinone-fused enediynes biosynthetic gene clusters identified four genes, tnmE6, tnmH, tnmL, and tnmQ, unique to the tnm gene cluster. Larger scale fermentation of both the S. sp. CB03234 wild-type and the Δ tnmH and Δ tnmL mutant strains resulted in the characterization of 20 new tiancimycin (TNM) congeners, including five enediynes. These findings enabled a proposal for the late stage of TNM biosynthesis featuring an intermediate possibly common for all anthraquinone-fused enediynes.


Assuntos
Antraquinonas/metabolismo , Enedi-Inos/metabolismo , Luz , Família Multigênica , Antraquinonas/química , Enedi-Inos/química , Estrutura Molecular
8.
ACS Chem Biol ; 13(9): 2728-2738, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30152678

RESUMO

Tautomycetin (TTN) is a polyketide natural product featuring a terminal alkene. Functional characterization of the genes within the ttn gene cluster from Streptomyces griseochromogenes established the biosynthesis of the TTN polyketide backbone, its dialkylmaleic anhydride moiety, the coupling of the two moieties to form the nascent intermediate TTN F-1, and the tailoring steps converting TTN F-1 to TTN. Here, we report biochemical and structural characterization of TtnD, a prenylated FMN (prFMN)-dependent decarboxylase belonging to the UbiD family that catalyzes the penultimate step of TTN biosynthesis. TtnD catalyzes decarboxylation of TTN D-1 to TTN I-1, utilizing prFMN as a cofactor generated by the TtnC flavin prenyltransferase; both TtnD and TtnC are encoded within the ttn biosynthetic gene cluster. TtnD exhibits substrate promiscuity but accepts only TTN D-1 congeners that feature an α,ß-unsaturated acid, supporting the [3+2] cycloaddition mechanism during catalysis that requires the double bond of an α,ß-unsaturated acid substrate. TtnD shares a similar overall structure with other members of the UbiD family but forms a homotetramer in solution. Each protomer is composed of three domains with the active site located between the middle and C-terminal domains; R169-E272-E277, constituting the catalytic triad, and E228, involved in Mn(II)-mediated binding of prFMN, were confirmed by site-directed mutagenesis. TtnD represents the first example of a prFMN-dependent decarboxylase involved in polyketide biosynthesis, expanding the substrate scope of the UbiD family of decarboxylases beyond simple aromatic and cinnamic acids. TtnD and its homologues are widespread in nature and could be exploited as biocatalysts for organic synthesis.


Assuntos
Vias Biossintéticas , Carboxiliases/metabolismo , Mononucleotídeo de Flavina/metabolismo , Furanos/metabolismo , Streptomyces/enzimologia , Carboxiliases/química , Cristalografia por Raios X , Lipídeos , Modelos Moleculares , Conformação Proteica , Prenilação de Proteína , Streptomyces/química , Streptomyces/metabolismo , Especificidade por Substrato
9.
Cell Chem Biol ; 25(9): 1075-1085.e4, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-29937405

RESUMO

The enediynes, microbial natural products with extraordinary cytotoxicities, have been translated into clinical drugs. Two self-resistance mechanisms are known in the enediyne producers-apoproteins for the nine-membered enediynes and self-sacrifice proteins for the ten-membered enediyne calicheamicin. Here we show that: (1) tnmS1, tnmS2, and tnmS3 encode tiancimycin (TNM) resistance in its producer Streptomyces sp. CB03234, (2) tnmS1, tnmS2, and tnmS3 homologs are found in all anthraquinone-fused enediyne producers, (3) TnmS1, TnmS2, and TnmS3 share a similar ß barrel-like structure, bind TNMs with nanomolar KD values, and confer resistance by sequestration, and (4) TnmS1, TnmS2, and TnmS3 homologs are widespread in nature, including in the human microbiome. These findings unveil an unprecedented resistance mechanism for the enediynes. Mechanisms of self-resistance in producers serve as models to predict and combat future drug resistance in clinical settings. Enediyne-based chemotherapies should now consider the fact that the human microbiome harbors genes encoding enediyne resistance.


Assuntos
Antraquinonas/química , Antraquinonas/farmacologia , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacologia , Enedi-Inos/química , Enedi-Inos/farmacologia , Streptomyces/genética , Antraquinonas/metabolismo , Antibióticos Antineoplásicos/metabolismo , Farmacorresistência Bacteriana , Enedi-Inos/metabolismo , Genes Bacterianos , Humanos , Modelos Moleculares , Família Multigênica , Streptomyces/efeitos dos fármacos , Streptomyces/metabolismo
10.
J Nat Prod ; 81(3): 594-599, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29345939

RESUMO

The potent cytotoxicity and unique mode of action make the enediyne antitumor antibiotic C-1027 an exquisite drug candidate for anticancer chemotherapy. However, clinical development of C-1027 has been hampered by its low titer from the original producer Streptomyces globisporus C-1027. Here we report three new C-1027 alternative producers, Streptomyces sp. CB00657, CB02329, and CB03608, from The Scripps Research Institute actinomycetes strain collection. Together with the previously disclosed Streptomyces sp. CB02366 strain, four C-1027 alternative producers with C-1027 titers of up to 11-fold higher than the original producer have been discovered. The five C-1027 producers, isolated from distant geographic locations, are distinct Streptomyces strains based on morphology and taxonomy. Pulsed-field gel electrophoresis and Southern analysis of the five C-1027 producers reveal that their C-1027 biosynthetic gene clusters (BGCs) are all located on giant plasmids of varying sizes. The high nucleotide sequence similarity among the five C-1027 BGCs implies that they most likely have evolved from a common ancestor.


Assuntos
Aminoglicosídeos/genética , Antibióticos Antineoplásicos/metabolismo , Enedi-Inos/metabolismo , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Família Multigênica/genética , Plasmídeos/genética , Streptomyces/genética
11.
ACS Omega ; 2(8): 5159-5169, 2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-28884166

RESUMO

Enediynes are potent natural product anticancer antibiotics, and are classified as 9- or 10-membered according to the size of their enediyne core carbon skeleton. Both 9- and 10-membered enediyne cores are biosynthesized by the enediyne polyketide synthase (PKSE), thioesterase (TE), and PKSE-associated enzymes. Although the divergence between 9- and 10-membered enediyne core biosynthesis remains unclear, it has been observed that nascent polyketide intermediates, tethered to the acyl carrier protein (ACP) domain of PKSE, could be released by TE in the absence of the PKSE-associated enzymes. In this study, we determined the crystal structure of SgcE10, the TE that participates in the biosynthesis of the 9-membered enediyne C-1027. Structural comparison of SgcE10 with CalE7 and DynE7, two TEs that participate in the biosynthesis of the 10-membered enediynes calicheamicin and dynemicin, respectively, revealed that they share a common α/ß hot-dog fold. The amino acids involved in both substrate binding and catalysis are conserved among SgcE10, CalE7, and DynE7. The volume and the shape of the substrate-binding channel and active site in SgcE10, CalE7, and DynE7 confirm that TEs from both 9- and 10-membered enediyne biosynthetic machineries bind the linear form of similar ACP-tethered polyene intermediates. Taken together, these findings further support the proposal that the divergence between 9- and 10-membered enediyne core biosynthesis occurs beyond PKSE and TE catalysis.

12.
J Am Chem Soc ; 138(12): 4155-67, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-26982529

RESUMO

Modular polyketide synthases (PKSs) direct the biosynthesis of clinically valuable secondary metabolites in bacteria. The fidelity of chain growth depends on specific recognition between successive subunits in each assembly line: interactions mediated by C- and N-terminal "docking domains" (DDs). We have identified a new family of DDs in trans-acyl transferase PKSs, exemplified by a matched pair from the virginiamycin (Vir) system. In the absence of C-terminal partner (VirA (C)DD) or a downstream catalytic domain, the N-terminal DD (VirFG (N)DD) exhibits multiple characteristics of an intrinsically disordered protein. Fusion of the two docking domains results in a stable fold for VirFG (N)DD and an overall protein-protein complex of unique topology whose structure we support by site-directed mutagenesis. Furthermore, using small-angle X-ray scattering (SAXS), the positions of the flanking acyl carrier protein and ketosynthase domains have been identified, allowing modeling of the complete intersubunit interface.


Assuntos
Aciltransferases/metabolismo , Policetídeo Sintases/metabolismo , Virginiamicina/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Virginiamicina/metabolismo
13.
Chembiochem ; 16(9): 1357-64, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25851784

RESUMO

Modular polyketide synthases (PKSs) are multidomain multienzymes responsible for the biosynthesis in bacteria of a wide range of polyketide secondary metabolites of clinical value. The stereochemistry of these molecules is an attractive target for genetic engineering in attempts to produce analogues exhibiting novel therapeutic properties. The exchange of ketoreductase (KR) domains in model PKSs has been shown in several cases to predictably alter the configuration of the ß-hydroxy functionalities but not of the α-methyl groups. By systematic screening of a broad panel of KR domains, we have identified two donor KRs that afford modification of α-methyl group stereochemistry. To the best of our knowledge, this provides the first direct in vivo evidence of KR-catalyzed epimerization. However, none of the introduced KRs afforded simultaneous alteration of methyl and hydroxy configurations in high yield. Therefore, swapping of whole modules might be necessary to achieve such changes in stereochemistry.


Assuntos
Oxirredutases do Álcool/metabolismo , Proteínas de Bactérias/metabolismo , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo , Engenharia de Proteínas , Streptomyces/enzimologia , Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Policetídeo Sintases/química , Policetídeo Sintases/genética , Policetídeos/química , Estrutura Terciária de Proteína , Estereoisomerismo , Streptomyces/química , Streptomyces/genética , Streptomyces/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA