Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 7444, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198396

RESUMO

For high rate water electrolysers, minimising Ohmic losses through efficient gas bubble evacuation away from the active electrode is as important as minimising activation losses by improving the electrode's electrocatalytic properties. In this work, by a combined experimental and computational fluid dynamics (CFD) approach, we identify the topological parameters of flow-engineered 3-D electrodes that direct their performance towards enhanced bubble evacuation. In particular, we show that integrating Ni-based foam electrodes into a laterally-graded bi-layer zero-gap cell configuration allows for alkaline water electrolysis to become Proton Exchange Membrane (PEM)-like, even when keeping a state-of-the-art Zirfon diaphragm. Detailed CFD simulations, explicitly taking into account the entire 3-D electrode and cell topology, show that under a forced uniform upstream electrolyte flow, such a graded structure induces a high lateral velocity component in the direction normal to and away from the diaphragm. This work is therefore an invitation to start considering PEM-like cell designs for alkaline water electrolysis as well, in particular the use of square or rectangular electrodes in flow-through type electrochemical cells.

2.
Materials (Basel) ; 15(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35268859

RESUMO

For proton exchange membrane water electrolysis (PEMWE) to become competitive, the cost of stack components, such as bipolar plates (BPP), needs to be reduced. This can be achieved by using coated low-cost materials, such as copper as alternative to titanium. Herein we report on highly corrosion-resistant copper BPP coated with niobium. All investigated samples showed excellent corrosion resistance properties, with corrosion currents lower than 0.1 µA cm-2 in a simulated PEM electrolyzer environment at two different pH values. The physico-chemical properties of the Nb coatings are thoroughly characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). A 30 µm thick Nb coating fully protects the Cu against corrosion due to the formation of a passive oxide layer on its surface, predominantly composed of Nb2O5. The thickness of the passive oxide layer determined by both EIS and XPS is in the range of 10 nm. The results reported here demonstrate the effectiveness of Nb for protecting Cu against corrosion, opening the possibility to use it for the manufacturing of BPP for PEMWE. The latter was confirmed by its successful implementation in a single cell PEMWE based on hydraulic compression technology.

3.
Sci Rep ; 10(1): 10948, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616871

RESUMO

Rationally designed free-standing and binder-free Raney-type nickel-molybdenum (Ni-Mo) electrodes produced via atmospheric plasma spraying (APS) are developed by correlating APS process parameters with the microstructure of electrodes and their electrochemical performance in alkaline media. The results revealed that the electrode morphology and elemental composition are highly affected by the plasma parameters during the electrode fabrication. It is found that increasing plasma gas flow rate and input plasma power resulted in higher in-flight particle velocities and shorter dwell time, which in result delivered electrodes with much finer structure exhibiting homogeneous distribution of phases, larger quantity of micro pores and suitable content of Ni and Mo. Tafel slope of electrodes decreased with increasing the in-flight particles velocities from 71 to 33 mV dec-1 in 30 wt.% KOH. However, beyond a critical threshold in-flight velocity and temperature of particles, electrodes started to exhibit larger globular pores and consequently reduced catalytic performance and higher Tafel slop of 36 mV dec-1 in 30 wt.% KOH. Despite slightly lower electrochemical performance, the electrodes produced with highest plasma gas flow and energy showed most inter-particle bonded structure as well as highest stability with no measurable degradation over 47 days in operation as HER electrode in 30 wt.% KOH. The Raney-type Ni-Mo electrode fabricated at highest plasma gas flow rate and input plasma power has been tested as HER electrode in alkaline water electrolyzer, which delivered high current densities of 0.72 and 2 A cm-2 at 1.8 and 2.2 V, respectively, representing a novel prime example of HER electrode, which can synergistically catalyze the HER in alkaline electrolyzer. This study shows that sluggish alkaline HER can be circumvented by rational electrode composition and interface engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA