Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 1011498, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238289

RESUMO

Neoadjuvant therapy is the cornerstone of modern rectal cancer treatment. Insights into the biology of tumor responses are essential for the successful implementation of organ-preserving strategies, as different treatments may lead to specific tumor responses. In this study, we aim to explore treatment-specific responses of the tumor microenvironment. Patients with locally advanced adenocarcinoma of the rectum who had received neo-adjuvant chemotherapy (CT), neo-adjuvant radiochemotherapy (RCT), neo-adjuvant radiotherapy with a long-interval (LRT) or short-interval (SRT) or no neoadjuvant therapy (NT) as control were included. Multiplex-immunofluorescence was performed to determine the presence of cytotoxic T-cells (T-cyt; CD3+CD8+), regulatory T-cells (T-reg; CD3+FOXP3+), T-helper cells (T-helper; CD3+CD8-FOXP3-), B cells (CD20+), dendritic cells (CD11c+) and tumor cells (panCK+). A total of 80 rectal cancer patients were included. Treatment groups were matched for gender, tumor location, response to therapy, and TNM stage. The pattern of response (shrinkage vs. fragmentation) was, however, different between treatment groups. Our analyses reveal that RCT-treated patients exhibited lower stromal T-helper, T-reg, and T-cyt cells compared to other treatment regimens. In conclusion, we demonstrated treatment-specific differences in the immune microenvironment landscape of rectal cancer patients. Understanding the underlying mechanisms of this landscape after a specific therapy will benefit future treatment decisions.


Assuntos
Neoplasias Retais , Quimiorradioterapia Adjuvante , Quimioterapia Adjuvante , Fatores de Transcrição Forkhead , Humanos , Terapia Neoadjuvante , Neoplasias Retais/patologia , Microambiente Tumoral
2.
PLoS One ; 17(10): e0275906, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36227963

RESUMO

BACKGROUND: Immunotherapy is now considered as the new pillar in treatment of cancer patients. Dendritic cells (DCs) play an essential role in stimulating anti-tumor immune responses, as they are capable of cross-presenting exogenous tumor antigens in MHCI complexes to activate naïve CD8+ T cells. Analgesics, like non-steroid anti-inflammatory drugs (NSAIDs), are frequently given to cancer patients to help relieve pain, however little is known about their impact on DC function. METHODS: Here, we investigated the effect of the NSAIDs diclofenac, ibuprofen and celecoxib on the three key processes of DCs required for proper CD8+ cytotoxic T cell induction: antigen cross-presentation, co-stimulatory marker expression, and cytokine production. RESULTS: Our results show that TLR-induced pro- and anti-inflammatory cytokine excretion by human monocyte derived and murine bone-marrow derived DCs is diminished after NSAID exposure. CONCLUSIONS: These results indicate that various NSAIDs can affect DC function and warrant further investigation into the impact of NSAIDs on DC priming of T cells and cancer immunotherapy efficacy.


Assuntos
Células Dendríticas , Neoplasias , Animais , Anti-Inflamatórios não Esteroides/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Antígenos de Neoplasias/metabolismo , Linfócitos T CD8-Positivos , Celecoxib/metabolismo , Celecoxib/farmacologia , Citocinas/metabolismo , Diclofenaco/metabolismo , Humanos , Ibuprofeno/metabolismo , Camundongos , Neoplasias/terapia
3.
Elife ; 112022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35969037

RESUMO

Knockout (KO) mouse models play critical roles in elucidating biological processes behind disease-associated or disease-resistant traits. As a presumed consequence of gene KO, mice display certain phenotypes. Based on insight into the molecular role of said gene in a biological process, it is inferred that the particular biological process causally underlies the trait. This approach has been crucial towards understanding the basis of pathological and/or advantageous traits associated with Mertk KO mice. Mertk KO mice suffer from severe, early-onset retinal degeneration. MERTK, expressed in retinal pigment epithelia, is a receptor tyrosine kinase with a critical role in phagocytosis of apoptotic cells or cellular debris. Therefore, early-onset, severe retinal degeneration was described to be a direct consequence of failed MERTK-mediated phagocytosis of photoreceptor outer segments by retinal pigment epithelia. Here, we report that the loss of Mertk alone is not sufficient for retinal degeneration. The widely used Mertk KO mouse carries multiple coincidental changes in its genome that affect the expression of a number of genes, including the Mertk paralog Tyro3. Retinal degeneration manifests only when the function of Tyro3 is concomitantly lost. Furthermore, Mertk KO mice display improved anti-tumor immunity. MERTK is expressed in macrophages. Therefore, enhanced anti-tumor immunity was inferred to result from the failure of macrophages to dispose of cancer cell corpses, resulting in a pro-inflammatory tumor microenvironment. The resistance against two syngeneic mouse tumor models observed in Mertk KO mice is not, however, phenocopied by the loss of Mertk alone. Neither Tyro3 nor macrophage phagocytosis by alternate genetic redundancy accounts for the absence of anti-tumor immunity. Collectively, our results indicate that context-dependent epistasis of independent modifier alleles determines Mertk KO traits.


Assuntos
Degeneração Retiniana , Alelos , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Fagocitose/genética , Fenótipo , Proteínas Proto-Oncogênicas/genética , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Pigmentos da Retina , c-Mer Tirosina Quinase/genética , c-Mer Tirosina Quinase/metabolismo
4.
Radiother Oncol ; 174: 158-167, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35870728

RESUMO

Cyclic GMP-AMP synthase (cGAS), second messenger 2'3'-cyclic GMP-AMP (cGAMP) and stimulator of interferon genes (STING) are fundamental for sensing cytoplasmic double stranded DNA. Radiotherapy treatment induces large amounts of nuclear and mitochondrial DNA damage and results in the presence of DNA fragments in the cytoplasm, activating the cGAS/STING pathway. Triggering of the cGAS/STING pathway in the tumor microenvironment (TME) results in the production of type I interferons (IFNs). Type I IFNs are crucial for an effective antitumor defense, with myeloid cells as key players. Many questions remain on how these myeloid cells are activated and in which cells (tumor versus myeloid) in the TME the signaling pathway is initiated. The significance of cGAS/STING signaling in the onco-immunology field is being recognized, emphasized by the frequent occurrence of mutations in or silencing of genes in this pathway. We here review several mechanisms of cGAS/STING signal propagation in the TME, focusing on tumor cells and myeloid cells. Cell-cell contact-dependent interactions facilitate the transfer of tumor-derived DNA and cGAMP. Alternatively, transport routes via the extracellular space such as extracellular vesicles, and channel-mediated cGAMP transfer to and from the extracellular space contribute to propagation of cGAS/STING signal mediators DNA and cGAMP. Finally, we discuss regulation of extracellular cGAMP. Altogether, we provide a comprehensive overview of cGAS/cGAMP/STING signal propagation from tumor to myeloid cells in the TME, revealing novel targets for combinatorial treatment approaches with conventional anticancer therapies like radiotherapy.


Assuntos
Interferon Tipo I , Neoplasias , DNA Mitocondrial , Humanos , Interferon Tipo I/metabolismo , Proteínas de Membrana/genética , Células Mieloides/metabolismo , Neoplasias/radioterapia , Nucleotídeos Cíclicos , Nucleotidiltransferases , Microambiente Tumoral
5.
Cancers (Basel) ; 13(5)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802339

RESUMO

To study head and neck squamous cell carcinomas (HNSCC) in vitro, a large variety of HNSCC cell lines have been developed. Here, we characterize a panel of 22 HNSCC cell lines, thereby providing a tool for research into tumor-specific treatment options in HNSCC. Both human papillomavirus (HPV) positive and HPV negative tumor cell lines were collected from commercial and collaborative sources. Short tandem repeat profiling was used to confirm or characterize the identity of the cell lines. Targeted sequencing was performed using a standard pathology single molecule Molecular Inversion Probe panel to detect mutations for 23 tumor suppressors and oncogenes. HPV status, p16 status, radiosensitivity data, and hypoxia data are summarized from all cell lines. We detected HPV transcripts in five cell lines, all of which overexpressed p16. One HPV negative cell line was also p16 positive. We detected mutations in KIT (SCCNij185), PIK3CA (SCCNij185), and CDKN2A (UT-SCC-5 and UT-SCC-38). TP53 mutations were the most frequent, occurring in 16/22 cell lines. HPV infection and TP53 mutations were almost mutually exclusive, with the exception of 93-VU-147T. The cell lines exhibited a wide range of sensitivities towards hypoxia and irradiation. Here, we provide a description of a set of frequently used HNSCC cell lines with diverse characteristics as found in HNSCC patients.

6.
Adv Sci (Weinh) ; 7(18): 2001797, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32999851

RESUMO

In the last decade, organoid technology has developed as a primary research tool in basic biological and clinical research. The reliance on poorly defined animal-derived extracellular matrix, however, severely limits its application in regenerative and translational medicine. Here, a well-defined, synthetic biomimetic matrix based on polyisocyanide (PIC) hydrogels that support efficient and reproducible formation of mammary gland organoids (MGOs) in vitro is presented. Only decorated with the adhesive peptide RGD for cell binding, PIC hydrogels allow MGO formation from mammary fragments or from purified single mammary epithelial cells. The cystic organoids maintain their capacity to branch for over two months, which is a fundamental and complex feature during mammary gland development. It is found that small variations in the 3D matrix give rise to large changes in the MGO: the ratio of the main cell types in the MGO is controlled by the cell-gel interactions via the cell binding peptide density, whereas gel stiffness controls colony formation efficiency, which is indicative of the progenitor density. Simple hydrogel modifications will allow for future introduction and customization of new biophysical and biochemical parameters, making the PIC platform an ideal matrix for in depth studies into organ development and for application in disease models.

7.
Radiother Oncol ; 149: 1-7, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32361013

RESUMO

BACKGROUND AND PURPOSE: Hypoxia negatively affects treatment outcome in both Human papillomavirus (HPV)-positive and -negative head and neck squamous cell carcinomas (HNSCC). Despite HPV-positive patients having a relatively good prognosis, hypoxic HPV-positive tumours are associated with poor treatment outcome, and do not respond to hypoxia modification. Earlier, we showed that hypoxia induces the pro-survival AKT pathway. In this study, we aim to investigate whether AKT inhibition affects the response to radiotherapy under hypoxia, and determine whether this is a viable treatment strategy for HNSCC patients with hypoxic HPV-positive tumours. MATERIALS AND METHODS: Nine HPV-negative and 4 HPV-positive HNSCC cell lines were characterized. AKT activation was assessed by western blot. Survival in response to hypoxic incubation, AKT inhibition and/or irradiation was assessed using CCK8 assays and colony forming assays. RESULTS: AKT was activated under hypoxia in both HPV-negative and -positive cell lines, which could be abrogated by the AKT inhibitor MK2206. HPV-positive cell lines were highly sensitive to MK2206 at normoxia. In all HNSCC cell lines, AKT inhibition was significantly more effective in inhibiting cell growth during hypoxic conditions than under normoxia. Hypoxia significantly reduced radiosensitivity irrespective of HPV-status, yet specifically in HPV-positive cells this could be efficiently reversed by AKT inhibition. CONCLUSIONS: These data suggest that HNSCC tumours are dependent on AKT to survive hypoxia, and that AKT inhibition is specifically effective in radioresistant hypoxic HPV-positive cells. Targeting AKT may thus be a potential way to overcome hypoxia induced radioresistance, particularly in HPV-positive HNSCC tumours.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Linhagem Celular Tumoral , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Hipóxia , Infecções por Papillomavirus/complicações , Proteínas Proto-Oncogênicas c-akt , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia
8.
Dev Biol ; 463(2): 101-109, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32422143

RESUMO

Loss of expression of the transcription regulator DC-SCRIPT (Zfp366) is a prominent prognostic event in estrogen receptor-positive breast cancer patients. Studying the inherent link between breast morphogenesis and tumorigenesis, we recently reported that DC-SCRIPT affects normal mammary branching morphogenesis and mammary epithelium homeostasis. Here we investigated the molecular mechanism involved in DC-SCRIPT mediated regulation of FGF2 induced mammary branching morphogenesis in a 3D organoid culture system. Our data show that the delayed mammary organoid branching observed in DC-SCRIPT-/- organoids cannot be compensated for by increasing FGF2 levels. Interestingly, FGFR1, the dominant FGF2 receptor, was expressed at a significantly lower level in basal epithelial cells of DC-SCRIPT deficient organoids relative to wildtype organoids. A potential link between DC-SCRIPT and FGFR1 was further supported by the predicted locations of the DC-SCRIPT DNA binding motif at the Fgfr1 gene. Moreover, ERK1/2 phosphorylation downstream of the FGFR1 pathway was decreased in basal epithelial cells of DC-SCRIPT deficient organoids. Altogether, this study shows a relationship between DC-SCRIPT and FGFR1 related pERK signaling in modulating the branching morphogenesis of mammary organoids in vitro.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Glândulas Mamárias Animais/embriologia , Proteínas Nucleares/metabolismo , Organogênese , Organoides/embriologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Feminino , Sistema de Sinalização das MAP Quinases , Glândulas Mamárias Animais/citologia , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Organoides/citologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Fatores de Transcrição/genética
9.
J Immunother Cancer ; 8(1)2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32461350

RESUMO

BACKGROUND: Tumor ablation techniques, like cryoablation, are successfully used in the clinic to treat tumors. The tumor debris remaining in situ after ablation is a major antigen depot, including neoantigens, which are presented by dendritic cells (DCs) in the draining lymph nodes to induce tumor-specific CD8+ T cells. We have previously shown that co-administration of adjuvants is essential to evoke strong in vivo antitumor immunity and the induction of long-term memory. However, which adjuvants most effectively combine with in situ tumor ablation remains unclear. METHODS AND RESULTS: Here, we show that simultaneous administration of cytidyl guanosyl (CpG) with saponin-based adjuvants following cryoablation affects multifunctional T-cell numbers and interleukin (IL)-1 induced polymorphonuclear neutrophil recruitment in the tumor draining lymph nodes, relative to either adjuvant alone. The combination of CpG and saponin-based adjuvants induces potent DC maturation (mainly CpG-mediated), antigen cross-presentation (mainly saponin-based adjuvant mediated), while excretion of IL-1ß by DCs in vitro depends on the presence of both adjuvants. Most strikingly, CpG/saponin-based adjuvant exposed DCs potentiate antigen-specific T-cell proliferation resulting in multipotent T cells with increased capacity to produce interferon (IFN)γ, IL-2 and tumor necrosis factor-α in vitro. Also in vivo the CpG/saponin-based adjuvant combination plus cryoablation increased the numbers of tumor-specific CD8+ T cells showing enhanced IFNγ production as compared with single adjuvant treatments. CONCLUSIONS: Collectively, these data indicate that co-injection of CpG with saponin-based adjuvants after cryoablation induces an increased amount of tumor-specific multifunctional T cells. The combination of saponin-based adjuvants with toll-like receptor 9 adjuvant CpG in a cryoablative setting therefore represents a promising in situ vaccination strategy.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Interleucina-1/fisiologia , Linfonodos/imunologia , Melanoma Experimental/terapia , Oligodesoxirribonucleotídeos/administração & dosagem , Saponinas/administração & dosagem , Linfócitos T/imunologia , Animais , Ablação por Cateter/métodos , Terapia Combinada , Células Dendríticas/imunologia , Feminino , Linfonodos/patologia , Ativação Linfocitária/imunologia , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T/patologia
10.
Clin Transl Radiat Oncol ; 22: 90-97, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32337377

RESUMO

Tumor growth is not only dictated by events involving tumor cells, but also by the environment they reside in, the so-called tumor microenvironment (TME). In the TME, cancer-associated fibroblasts (CAFs) are often the predominant cell type. CAFs were long considered to be of limited importance in the TME, but are now recognized for their pivotal role in cancer progression. Recently, it has become evident that different subsets of CAFs exist, with certain CAF subtypes having protumorigenic properties, whereas others show more antitumorigenic characteristics. Currently, the intricate interaction between the different subsets of CAFs with tumor cells, but also with immune cells that reside in the TME, is still poorly understood. This crosstalk of CAFs with tumor and immune cells in the TME largely dictates how a tumor responds to therapy and whether the tumor will eventually be eliminated, stay dormant or will progress and metastasize. Radiotherapy (RT) is a widely used and mostly very effective local cancer treatment, but CAFs are remarkably RT resistant. Although radiation does cause persistent DNA damage, CAFs do not die upon clinically applied doses of RT, but rather become senescent. Through the secretion of cytokines and growth factors they have been implicated in the induction of tumor radioresistance and recruitment of specific immune cells to the TME, thereby affecting local immune responses. In this review we will discuss the versatile role of CAFs in the TME and their influence on RT response.

11.
Front Oncol ; 10: 615697, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33604296

RESUMO

During the last years, preclinical and clinical studies have emerged supporting the rationale to integrate radiotherapy and immunotherapy. Radiotherapy may enhance the effects of immunotherapy by improving tumor antigen release, antigen presentation, and T-cell infiltration. Recently, magnetic resonance guided radiotherapy (MRgRT) has become clinically available. Compared to conventional radiotherapy techniques, MRgRT firstly allows for daily on-table treatment adaptation, which enables both dose escalation for increasing tumor response and superior sparing of radiosensitive organs-at-risk for reducing toxicity. The current review focuses on the potential of combining MR-guided adaptive radiotherapy with immunotherapy by providing an overview on the current status of MRgRT, latest developments in preclinical and clinical radio-immunotherapy, and the unique opportunities and challenges for MR-guided radio-immunotherapy. MRgRT might especially assist in answering open questions in radio-immunotherapy regarding optimal radiation dose, fractionation, timing of immunotherapy, appropriate irradiation volumes, and response prediction.

12.
Cancers (Basel) ; 11(12)2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31817870

RESUMO

Radiotherapy is an important treatment modality of head and neck squamous cell carcinomas (HNSCC). Multiple links have been described between the metabolic activity of tumors and their clinical outcome. Here we test the hypothesis that metabolic features determine radiosensitivity, explaining the relationship between metabolism and clinical outcome. Radiosensitivity of 14 human HNSCC cell lines was determined using colony forming assays and the expression profile of approximately 200 metabolic and cancer-related genes was generated using targeted RNA sequencing by single molecule molecular inversion probes. Results: Correlation between radiosensitivity data and expression profiles yielded 18 genes associated with radiosensitivity or radioresistance, of which adenosine triphosphate (ATP) citrate lyase (ACLY) was of particular interest. Pharmacological inhibition of ACLY caused an impairment of DNA damage repair, specifically homologous recombination, and lead to radiosensitization in HNSCC cell lines. Examination of a The Cancer Genome Atlas (TCGA) cohort of HNSCC patients revealed that high expression of ACLY was predictive for radiotherapy failure, as it was only associated with poor overall survival in patients who received radiotherapy (hazard ratio of 2.00, 95% CI: 1.12-3.55; p = 0.0184). These data were further validated in an independent cohort of HNSCC patients treated with chemoradiation. Furthermore, patients with poor locoregional control after radiotherapy have significantly higher nuclear ACLY protein levels. Together, we here show that ACLY affects DNA damage repair, and is a predictive factor for radiotherapy outcome in HNSCC.

13.
Nat Commun ; 10(1): 5171, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31729386

RESUMO

Basement membrane transmigration during embryonal development, tissue homeostasis and tumor invasion relies on invadosomes, a collective term for invadopodia and podosomes. An adequate structural framework for this process is still missing. Here, we reveal the modular actin nano-architecture that enables podosome protrusion and mechanosensing. The podosome protrusive core contains a central branched actin module encased by a linear actin module, each harboring specific actin interactors and actin isoforms. From the core, two actin modules radiate: ventral filaments bound by vinculin and connected to the plasma membrane and dorsal interpodosomal filaments crosslinked by myosin IIA. On stiff substrates, the actin modules mediate long-range substrate exploration, associated with degradative behavior. On compliant substrates, the vinculin-bound ventral actin filaments shorten, resulting in short-range connectivity and a focally protrusive, non-degradative state. Our findings redefine podosome nanoscale architecture and reveal a paradigm for how actin modularity drives invadosome mechanosensing in cells that breach tissue boundaries.


Assuntos
Actinas/química , Actinas/metabolismo , Podossomos/metabolismo , Actinas/genética , Animais , Adesão Celular , Membrana Celular/genética , Membrana Celular/metabolismo , Movimento Celular , Células Cultivadas , Células Dendríticas/química , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Humanos , Mecanotransdução Celular , Camundongos , Podossomos/química , Podossomos/genética
14.
Dev Biol ; 455(1): 42-50, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31265831

RESUMO

Mammary glands are unique organs in which major adaptive changes occur in morphogenesis and development after birth. Breast cancer is the most common cancer and a major cause of mortality in females worldwide. We have previously identified the loss of expression of the transcription regulator DC-SCRIPT (Zfp366) as a prominent prognostic event in estrogen receptor positive breast cancer patients. DC-SCRIPT affects multiple transcriptional events in breast cancer cells, including estrogen and progesterone receptor-mediated transcription, and promotes CDKN2B-related cell cycle arrest. As loss of DC-SCRIPT expression appears an early event in breast cancer development, we here investigated the role of DC-SCRIPT in mammary gland development using wild-type and DC-SCRIPT knockout mice. Mice lacking DC-SCRIPT exhibited severe breeding problems and showed significant growth delay relative to littermate wild-type mice. Subsequent analysis revealed that DC-SCRIPT was expressed in mouse mammary epithelium and that DC-SCRIPT deficiency delayed mammary gland morphogenesis in vivo. Finally, analysis of 3D mammary gland organoid cultures confirmed that loss of DC-SCRIPT dramatically delayed mammary organoid branching in vitro. The study shows for the first time that DC-SCRIPT deficiency delays mammary gland morphogenesis in vivo and in vitro. These data define DC-SCRIPT as a novel modulator of mammary gland development.


Assuntos
Proteínas de Ligação a DNA/genética , Glândulas Mamárias Animais/metabolismo , Morfogênese/genética , Proteínas Nucleares/genética , Organoides/metabolismo , Fatores de Transcrição/genética , Animais , Técnicas de Cultura de Células/métodos , Pontos de Checagem do Ciclo Celular/genética , Proteínas de Ligação a DNA/deficiência , Células Epiteliais/metabolismo , Epitélio/crescimento & desenvolvimento , Epitélio/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Homeostase/genética , Glândulas Mamárias Animais/crescimento & desenvolvimento , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/deficiência , Organoides/citologia , Organoides/crescimento & desenvolvimento , Fatores de Transcrição/deficiência
15.
Front Immunol ; 9: 1797, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30123220

RESUMO

Dendritic cells (DCs) are the professional antigen-presenting cells of the immune system. Proper function of DCs is crucial to elicit an effective immune response against pathogens and to induce antitumor immunity. Different members of the nuclear receptor (NR) family of transcription factors have been reported to affect proper function of immune cells. Nur77 is a member of the NR4A subfamily of orphan NRs that is expressed and has a function within the immune system. We now show that Nur77 is expressed in different murine DCs subsets in vitro and ex vivo, in human monocyte-derived DCs (moDCs) and in freshly isolated human BDCA1+ DCs, but its expression is dispensable for DC development in the spleen and lymph nodes. We show, by siRNA-mediated knockdown of Nur77 in human moDCs and by using Nur77-/- murine DCs, that Nur77-deficient DCs have enhanced inflammatory responses leading to increased T cell proliferation. Treatment of human moDCs with 6-mercaptopurine, an activator of Nur77, leads to diminished DC activation resulting in an impaired capacity to induce IFNγ production by allogeneic T cells. Altogether, our data show a yet unexplored role for Nur77 in modifying the activation status of murine and human DCs. Ultimately, targeting Nur77 may prove to be efficacious in boosting or diminishing the activation status of DCs and may lead to the development of improved DC-based immunotherapies in, respectively, cancer treatment or treatment of autoimmune diseases.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/deficiência , Animais , Células Cultivadas , Citocinas/metabolismo , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Linfócitos T/imunologia , Linfócitos T/metabolismo
16.
Front Immunol ; 9: 1420, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29988341

RESUMO

Dendritic cell (DC)-based immunotherapy makes use of the DC's ability to direct the adaptive immune response toward activation or inhibition. DCs perform this immune orchestration in part by secretion of selected cytokines. The most potent anti-inflammatory cytokine interleukin-10 (IL-10) is under tight regulation, as it needs to be predominantly expressed during the resolution phase of the immune response. Currently it is not clear whether there is active suppression of IL-10 by DCs at the initial pro-inflammatory stage of the immune response. Previously, knockdown of the DC-specific transcription factor DC-SCRIPT has been demonstrated to mediate an extensive increase in IL-10 production upon encounter with pro-inflammatory immune stimuli. Here, we explored how DC-SCRIPT contributes to IL-10 suppression under pro-inflammatory conditions by applying chromatin immunoprecipitation sequencing analysis of DC-SCRIPT and the epigenetic marks H3K4me3 and H3K27ac in human DCs. The data showed binding of DC-SCRIPT to a GA-rich motif at H3K27ac-marked genomic enhancers that associated with genes encoding MAPK dual-specificity phosphatases (DUSPs). Functional studies revealed that upon knockdown of DC-SCRIPT, human DCs express much less DUSP4 and exhibit increased phosphorylation of the three major MAPKs (ERK, JNK, and p38). Enhanced ERK signaling in DC-SCRIPT-knockdown-DCs led to higher production of IL-10, which was reverted by rescuing DUSP4 expression. Finally, DC-SCRIPT-knockdown-DCs induced less IFN-γ and increased IL-10 production in naïve T cells, indicative for a more anti-inflammatory phenotype. In conclusion, we have delineated a new mechanism by which DC-SCRIPT allows DCs to limit IL-10 production under inflammatory conditions and potentiate pro-inflammatory Th1 responses. These insights may be exploited to improve DC-based immunotherapies.

17.
Cancer Immunol Immunother ; 67(11): 1789-1796, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29998375

RESUMO

Dendritic cells (DCs) are widely used in DC-based immunotherapies because of their capacity to steer immune responses. So far treatment success is limited and more functional knowledge on how DCs initiate and stably drive specific responses is needed. Many intrinsic and extrinsic factors contribute to how DCs skew the immune response towards immunity or tolerance. The origin and type of DC, its maturation status, but also factors they encounter in the in vitro or in vivo microenvironment they reside in during differentiation and maturation affect this balance. Treatment success of DC vaccines will, therefore, also depend on the presence of these factors during the process of vaccination. Identification and further knowledge of natural and pharmacological compounds that modulate DC differentiation and function towards a specific response may help to improve current DC-based immunotherapies. This review focuses on factors that could improve the efficacy of DC vaccines in (pre-)clinical studies to enhance DC-based immunotherapy, with a particular emphasis on compounds acting on prostanoid or nuclear receptor families.


Assuntos
Vacinas Anticâncer/uso terapêutico , Células Dendríticas/imunologia , Imunoterapia , Neoplasias/terapia , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Prostaglandina/metabolismo , Microambiente Tumoral/imunologia , Animais , Células Dendríticas/metabolismo , Humanos , Ligantes , Neoplasias/imunologia , Neoplasias/metabolismo
18.
J Immunol ; 195(4): 1498-505, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26170389

RESUMO

The balance between tolerance and immunity is important for the outcome of an infection or cancer, and dendritic cells (DCs) are key regulators of this balance. DC-specific transcript (DC-SCRIPT) is a protein expressed by DCs and has been demonstrated to suppress both TLR-mediated expression of IL-10 and glucocorticoid receptor-mediated transcription of glucocorticoid-induced leucine zipper (GILZ). Because GILZ is known to promote IL-10 production, we investigated whether these two processes are linked. Dual-knockdown and inhibition experiments demonstrated that neither GILZ nor glucocorticoid receptor play a role in TLR-induced IL-10 production after DC-SCRIPT knockdown. The NF-κB pathway is another route involved in IL-10 production after DC activation. Strikingly, inhibition of NF-κB led to a decreased TLR-mediated IL-10 production in DC-SCRIPT knockdown DCs. Moreover, DC-SCRIPT knockdown DCs showed enhanced phosphorylation, acetylation, and IL10 enhancer binding of the NF-κB subunit p65. These data demonstrate that besides nuclear receptor regulation, DC-SCRIPT also modulates activation of NF-κBp65 after TLR activation in human DCs.


Assuntos
Proteínas de Transporte/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Interleucina-10/biossíntese , Fator de Transcrição RelA/metabolismo , Proteínas de Transporte/genética , Elementos Facilitadores Genéticos , Ativação Enzimática , Técnicas de Inativação de Genes , Humanos , Interleucina-10/genética , Fosforilação , Ligação Proteica , Interferência de RNA , Receptores de Glucocorticoides/metabolismo , Receptores Toll-Like/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo
19.
Breast Cancer Res Treat ; 149(3): 693-703, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25663546

RESUMO

Breast cancer is one of the most common causes of cancer-related deaths in women. The estrogen receptor (ERα) is well known for having growth promoting effects in breast cancer. Recently, we have identified DC-SCRIPT (ZNF366) as a co-suppressor of ERα and as a strong and independent prognostic marker in ESR1 (ERα gene)-positive breast cancer patients. In this study, we further investigated the molecular mechanism on how DC-SCRIPT inhibits breast cancer cell growth. DC-SCRIPT mRNA levels from 190 primary ESR1-positive breast tumors were related to global gene expression, followed by gene ontology and pathway analysis. The effect of DC-SCRIPT on breast cancer cell growth and cell cycle arrest was investigated using novel DC-SCRIPT-inducible MCF7 breast cancer cell lines. Genome-wide expression profiling of DC-SCRIPT-expressing MCF7 cells was performed to investigate the effect of DC-SCRIPT on cell cycle-related gene expression. Findings were validated by real-time PCR in a cohort of 1,132 ESR1-positive breast cancer patients. In the primary ESR1-positive breast tumors, DC-SCRIPT expression negatively correlated with several cell cycle gene ontologies and pathways. DC-SCRIPT expression strongly reduced breast cancer cell growth in vitro, breast tumor growth in vivo, and induced cell cycle arrest. In addition, in the presence of DC-SCRIPT, multiple cell cycles related genes were differentially expressed including the tumor suppressor gene CDKN2B. Moreover, in 1,132 primary ESR1-positive breast tumors, DC-SCRIPT expression also correlated with CDKN2B expression. Collectively, these data show that DC-SCRIPT acts as a novel regulator of CDKN2B and induces cell cycle arrest in ESR1-positive breast cancer cells.


Assuntos
Neoplasias da Mama/genética , Proteínas de Transporte/genética , Inibidor de Quinase Dependente de Ciclina p15/genética , Receptor alfa de Estrogênio/genética , Biomarcadores Tumorais/genética , Neoplasias da Mama/patologia , Proteínas de Transporte/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Proliferação de Células/genética , Inibidor de Quinase Dependente de Ciclina p15/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Humanos , Células MCF-7 , Proteínas de Neoplasias/biossíntese , RNA Mensageiro/biossíntese
20.
Int J Cancer ; 134(6): 1335-45, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24038106

RESUMO

Current multimodal treatments for patients with neuroblastoma (NBL), including anti-disialoganglioside (GD2) monoclonal antibody (mAb) based immunotherapy, result in a favorable outcome in around only half of the patients with advanced disease. To improve this, novel immunocombinational strategies need to be developed and tested in autologous preclinical NBL models. A genetically well-explored autologous mouse model for NBL is the TH-MYCN model. However, the immunobiology of the TH-MYCN model remains largely unexplored. We developed a mouse model using a transplantable TH-MYCN cell line in syngeneic C57Bl/6 mice and characterized the immunobiology of this model. In this report, we show the relevance and opportunities of this model to study immunotherapy for human NBL. Similar to human NBL cells, syngeneic TH-MYCN-derived 9464D cells endogenously express the tumor antigen GD2 and low levels of MHC Class I. The presence of the adaptive immune system had little or no influence on tumor growth, showing the low immunogenicity of the NBL cells. In contrast, depletion of NK1.1+ cells resulted in enhanced tumor outgrowth in both wild-type and Rag1(-/-) mice, showing an important role for NK cells in the natural anti-NBL immune response. Analysis of the tumor infiltrating leukocytes ex vivo revealed the presence of both tumor associated myeloid cells and T regulatory cells, thus mimicking human NBL tumors. Finally, anti-GD2 mAb mediated NBL therapy resulted in ADCC in vitro and delayed tumor outgrowth in vivo. We conclude that the transplantable TH-MYCN model represents a relevant model for the development of novel immunocombinatorial approaches for NBL patients.


Assuntos
Modelos Animais de Doenças , Gangliosídeos/imunologia , Proteínas de Homeodomínio/fisiologia , Imunoterapia , Neuroblastoma/terapia , Proteínas Proto-Oncogênicas/fisiologia , Linfócitos T Reguladores/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Western Blotting , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Proliferação de Células , Feminino , Citometria de Fluxo , Imunofluorescência , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína Proto-Oncogênica N-Myc , Neuroblastoma/imunologia , Neuroblastoma/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/patologia , Transgenes/fisiologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA