Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
Brain Behav Immun ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39303815

RESUMO

As an adjunct therapy, metformin enhances the efficacy of conventional antidepressant medications. However, its mode of action remains unclear. Here, metformin was found to ameliorate depression-like behaviors in mice exposed to chronic restraint stress (CRS) by normalizing the dysbiotic gut microbiome. Fecal transplants from metformin-treated mice ameliorated depressive behaviors in stressed mice. Microbiome profiling revealed that Akkermansia muciniphila (A. muciniphila), in particular, was markedly increased in the gut by metformin and that oral administration of this species alone was sufficient to reverse CRS-induced depressive behaviors and normalize aberrant stress-induced 5-hydroxytryptamine (5-HT) metabolism in the brain and gut. Untargeted metabolomic profiling further identified the bile acid metabolites taurocholate and deoxycholic acid as direct A. muciniphila-derived molecules that are, individually, sufficient to rescue the CRS-induced impaired 5-HT metabolism and depression-like behaviors. Thus, we report metformin reprograms 5-HT metabolism via microbiome-brain interactions to mitigate depressive syndromes, providing novel insights into gut microbiota-derived bile acids as potential therapeutic candidates for depressive mood disorders from bench to bedside.

2.
Biomolecules ; 14(8)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39199273

RESUMO

The impaired function of the serotonin transporter (SERT) in humans has been linked to a higher risk of obesity and type 2 diabetes, especially as people age. Consuming a "Western diet" (WD), which is high in saturated fats, cholesterol, and sugars, can induce metabolic syndrome. Previous research indicated that mice carrying a targeted inactivation of the Sert gene (knockout, KO) and fed a WD display significant metabolic disturbances and behaviors reminiscent of ADHD. These abnormalities might be mediated via a dysfunction in insulin receptor (IR) signaling, which is also associated with adult ADHD. However, the impact of Sert deficiency on IR signaling and systemic metabolic changes has not been thoroughly explored. In this study, we conducted a detailed analysis of locomotor behavior in wild-type (WT) and KO mice fed a WD or control diet. We investigated changes in the blood metabolome and examined, via PCR, the expression of insulin receptor A and B isoforms and key regulators of their function in the brain. Twelve-month-old KO mice and their WT littermates were fed a WD for three weeks. Nuclear magnetic resonance spectroscopy analysis of plasma samples showed that KO mice on a WD had higher levels of lipids and lipoproteins and lower levels of glucose, lactate, alanine, valine, and isoleucine compared to other groups. SERT-KO mice on the control diet exhibited increased brain levels of both IR A and B isoforms, accompanied by a modest increase in the negative regulator ENPP. The KO mice also displayed anxiety-like behavior and reduced exploratory activity in an open field test. However, when the KO animals were fed a WD, the aberrant expression levels of IR isoforms in the KO mice and locomotor behavior were ameliorated indicating a complex interaction between genetic and dietary factors that might contribute to ADHD-like symptoms. Overall, our findings suggest that the lack of Sert leads to a unique metabolic phenotype in aged mice, characterized by dysregulated IR-related pathways. These changes are exacerbated by WD in the blood metabolome and are associated with behavioral abnormalities.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Encéfalo , Dieta Ocidental , Metaboloma , Camundongos Knockout , Receptor de Insulina , Proteínas da Membrana Plasmática de Transporte de Serotonina , Animais , Masculino , Camundongos , Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Transtorno do Deficit de Atenção com Hiperatividade/sangue , Transtorno do Deficit de Atenção com Hiperatividade/genética , Comportamento Animal , Encéfalo/metabolismo , Dieta Ocidental/efeitos adversos , Camundongos Endogâmicos C57BL , Receptor de Insulina/metabolismo , Receptor de Insulina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo
3.
Ann Clin Transl Neurol ; 11(7): 1897-1908, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39012808

RESUMO

OBJECTIVE: Differentiating forms of autoimmune encephalitis (AE) from other causes of seizures helps expedite immunotherapies in AE patients and informs studies regarding their contrasting pathophysiology. We aimed to investigate whether and how Nuclear Magnetic Resonance (NMR)-based metabolomics could differentiate AE from drug-resistant epilepsy (DRE), and stratify AE subtypes. METHODS: This study recruited 238 patients: 162 with DRE and 76 AE, including 27 with contactin-associated protein-like 2 (CASPR2), 29 with leucine-rich glioma inactivated 1 (LGI1) and 20 with N-methyl-d-aspartate receptor (NMDAR) antibodies. Plasma samples across the groups were analyzed using NMR spectroscopy and compared with multivariate statistical techniques, such as orthogonal partial least squares discriminant analysis (OPLS-DA). RESULTS: The OPLS-DA model successfully distinguished AE from DRE patients with a high predictive accuracy of 87.0 ± 3.1% (87.9 ± 3.4% sensitivity and 86.3 ± 3.6% specificity). Further, pairwise OPLS-DA models were able to stratify the three AE subtypes. Plasma metabolomic signatures of AE included decreased high-density lipoprotein (HDL, -(CH2)n-, -CH3), phosphatidylcholine and albumin (lysyl moiety). AE subtype-specific metabolomic signatures were also observed, with increased lactate in CASPR2, increased lactate, glucose, and decreased unsaturated fatty acids (UFA, -CH2CH=) in LGI1, and increased glycoprotein A (GlycA) in NMDAR-antibody patients. INTERPRETATION: This study presents the first non-antibody-based biomarker for differentiating DRE, AE and AE subtypes. These metabolomics signatures underscore the potential relevance of lipid metabolism and glucose regulation in these neurological disorders, offering a promising adjunct to facilitate the diagnosis and therapeutics.


Assuntos
Epilepsia Resistente a Medicamentos , Encefalite , Humanos , Feminino , Epilepsia Resistente a Medicamentos/sangue , Epilepsia Resistente a Medicamentos/diagnóstico , Masculino , Adulto , Encefalite/sangue , Encefalite/diagnóstico , Pessoa de Meia-Idade , Diagnóstico Diferencial , Adulto Jovem , Autoanticorpos/sangue , Doença de Hashimoto/sangue , Doença de Hashimoto/diagnóstico , Metabolômica , Proteínas do Tecido Nervoso/sangue , Adolescente , Proteínas de Membrana/sangue , Espectroscopia de Ressonância Magnética , Peptídeos e Proteínas de Sinalização Intracelular/sangue , Biomarcadores/sangue , Receptores de N-Metil-D-Aspartato/imunologia , Doenças Autoimunes do Sistema Nervoso/sangue , Doenças Autoimunes do Sistema Nervoso/diagnóstico , Doenças Autoimunes do Sistema Nervoso/imunologia
4.
Biomedicines ; 12(7)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39061995

RESUMO

Our study investigated the innate immune response to Toxoplasma gondii infection by assessing microglial phenotypic changes and sickness behavior as inflammatory response markers post-ocular tachyzoite instillation. Disease progression in Swiss albino mice was compared with the previously documented outcomes in BALB/c mice using an identical ocular route and parasite burden (2 × 105 tachyzoites), with saline as the control. Contrary to expectations, the Swiss albino mice displayed rapid, lethal disease progression, marked by pronounced sickness behaviors and mortality within 11-12 days post-infection, while the survivors exhibited no apparent signs of infection. Comparative analysis revealed the T. gondii-infected BALB/c mice exhibited reduced avoidance of feline odors, while the infected Swiss albino mice showed enhanced avoidance responses. There was an important increase in microglial cells in the dentate gyrus molecular layer of the infected Swiss albino mice compared to the BALB/c mice and their respective controls. Hierarchical cluster and discriminant analyses identified three microglial morphological clusters, differentially affected by T. gondii infection across strains. The BALB/c mice exhibited increased microglial branching and complexity, while the Swiss albino mice showed reduced shrunken microglial arbors, diminishing their morphological complexity. These findings highlight strain-specific differences in disease progression and inflammatory regulation, indicating lineage-specific mechanisms in inflammatory responses, tolerance, and resistance. Understanding these elements is critical in devising control measures for toxoplasmosis.

5.
Neurobiol Stress ; 31: 100646, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38912378

RESUMO

Introduction: Depression is increasingly diagnosed in adolescence, necessitating specific prevention and treatment methods. However, there is a lack of animal models mimicking juvenile depression. This study explores a novel model using ultrasound (US) stress in juvenile mice. Methods: We employed the US stress model in one-month-old C57/BL6 mice, exposing them to alternating ultrasound frequencies (20-25 kHz and 25-45 kHz) for three weeks. These frequencies correspond to negative and neutral emotional states in rodents and can induce a depressive-like syndrome. Concurrently, mice received either an omega-3 food supplement (FS) containing eicosapentaenoic acid (EPA; 0.55 mg/kg/day) and docosahexaenoic acid (DHA; 0.55 mg/kg/day) or a vehicle. Post-stress, we evaluated anxiety- and depressive-like behaviors, blood corticosterone levels, brain expression of pro-inflammatory cytokines, and conducted metabolome analysis of brain, liver and blood plasma. Results: US-exposed mice treated with vehicle exhibited decreased sucrose preference, a sign of anhedonia, a key feature of depression, increased anxiety-like behavior, elevated corticosterone levels, and enhanced TNF and IL-1ß gene expression in the brain. In contrast, US-FS mice did not display these changes. Omega-3 supplementation also reduced anxiety-like behavior in non-stressed mice. Metabolomic analysis revealed US-induced changes in brain energy metabolism, with FS increasing brain sphingomyelin. Liver metabolism was affected by both US and FS, while plasma metabolome changes were exclusive to FS. Brain glucose levels correlated positively with activity in anxiety tests. Conclusion: Chronic omega-3 intake counteracted depressive- and anxiety-like behaviors in a US model of juvenile depression in mice. These effects likely stem from the anti-inflammatory properties of the supplement, suggesting potential therapeutic applications in juvenile depression.

6.
Nat Commun ; 15(1): 5239, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937448

RESUMO

Tuberculosis remains a large global disease burden for which treatment regimens are protracted and monitoring of disease activity difficult. Existing detection methods rely almost exclusively on bacterial culture from sputum which limits sampling to organisms on the pulmonary surface. Advances in monitoring tuberculous lesions have utilized the common glucoside [18F]FDG, yet lack specificity to the causative pathogen Mycobacterium tuberculosis (Mtb) and so do not directly correlate with pathogen viability. Here we show that a close mimic that is also positron-emitting of the non-mammalian Mtb disaccharide trehalose - 2-[18F]fluoro-2-deoxytrehalose ([18F]FDT) - is a mechanism-based reporter of Mycobacteria-selective enzyme activity in vivo. Use of [18F]FDT in the imaging of Mtb in diverse models of disease, including non-human primates, successfully co-opts Mtb-mediated processing of trehalose to allow the specific imaging of TB-associated lesions and to monitor the effects of treatment. A pyrogen-free, direct enzyme-catalyzed process for its radiochemical synthesis allows the ready production of [18F]FDT from the most globally-abundant organic 18F-containing molecule, [18F]FDG. The full, pre-clinical validation of both production method and [18F]FDT now creates a new, bacterium-selective candidate for clinical evaluation. We anticipate that this distributable technology to generate clinical-grade [18F]FDT directly from the widely-available clinical reagent [18F]FDG, without need for either custom-made radioisotope generation or specialist chemical methods and/or facilities, could now usher in global, democratized access to a TB-specific PET tracer.


Assuntos
Mycobacterium tuberculosis , Tomografia por Emissão de Pósitrons , Trealose , Tuberculose , Animais , Mycobacterium tuberculosis/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Trealose/metabolismo , Tuberculose/diagnóstico por imagem , Tuberculose/microbiologia , Tuberculose/metabolismo , Humanos , Camundongos , Radioisótopos de Flúor , Fluordesoxiglucose F18/metabolismo , Fluordesoxiglucose F18/química , Compostos Radiofarmacêuticos/metabolismo , Modelos Animais de Doenças , Feminino
7.
J Proteome Res ; 23(8): 3383-3392, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38943617

RESUMO

Tumor necrosis factor (TNF) has well-established roles in neuroinflammatory disorders, but the effect of TNF on the biochemistry of brain cells remains poorly understood. Here, we microinjected TNF into the brain to study its impact on glial and neuronal metabolism (glycolysis, pentose phosphate pathway, citric acid cycle, pyruvate dehydrogenase, and pyruvate carboxylase pathways) using 13C NMR spectroscopy on brain extracts following intravenous [1,2-13C]-glucose (to probe glia and neuron metabolism), [2-13C]-acetate (probing astrocyte-specific metabolites), or [3-13C]-lactate. An increase in [4,5-13C]-glutamine and [2,3-13C]-lactate coupled with a decrease in [4,5-13C]-glutamate was observed in the [1,2-13C]-glucose-infused animals treated with TNF. As glutamine is produced from glutamate by astrocyte-specific glutamine synthetase the increase in [4,5-13C]-glutamine reflects increased production of glutamine by astrocytes. This was confirmed by infusion with astrocyte substrate [2-13C]-acetate. As lactate is metabolized in the brain to produce glutamate, the simultaneous increase in [2,3-13C]-lactate and decrease in [4,5-13C]-glutamate suggests decreased lactate utilization, which was confirmed using [3-13C]-lactate as a metabolic precursor. These results suggest that TNF rearranges the metabolic network, disrupting the energy supply chain perturbing the glutamine-glutamate shuttle between astrocytes and the neurons. These insights pave the way for developing astrocyte-targeted therapeutic strategies aimed at modulating effects of TNF to restore metabolic homeostasis in neuroinflammatory disorders.


Assuntos
Astrócitos , Encéfalo , Ácido Glutâmico , Glutamina , Neurônios , Fator de Necrose Tumoral alfa , Animais , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Ratos , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Ácido Láctico/metabolismo , Glucose/metabolismo , Masculino , Ciclo do Ácido Cítrico/efeitos dos fármacos , Isótopos de Carbono , Glicólise/efeitos dos fármacos , Acetatos/farmacologia , Acetatos/metabolismo , Piruvato Carboxilase/metabolismo , Via de Pentose Fosfato/efeitos dos fármacos
8.
Front Cell Neurosci ; 18: 1345441, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414751

RESUMO

Introduction: Post-infection syndromes are characterised by fatigue, muscle pain, anhedonia, and cognitive impairment; mechanistic studies exploring these syndromes have focussed on pathways downstream of Toll-like receptor (TLR) 4 activation. Here, we investigated the mechanistic interplay between behaviour, metabolism, and inflammation downstream of TLR-7 activation compared to TLR-4 activation in male and female CD1 mice. Methods: Animals received either a TLR-4 (LPS; 0.83 mg/kg) or TLR-7 (R848, 5 mg/kg) agonist, or saline, and behaviour was analysed in an Open Field (OF) at 24 h (n = 20/group). Plasma, liver, and prefrontal cortex (PFC) were collected for gene expression analysis at 24 h and 1H-NMR metabolomics. Results: TLR-4 and TLR-7 activation decreased distance travelled and rearing in the OF, but activation of each receptor induced distinct cytokine responses and metabolome profiles. LPS increased IL-1ß expression and CXCL1 in the PFC, but TLR7 activation did not and strongly induced PFC CXCL10 expression. Thus, TLR7 induced sickness behaviour is independent of IL-1ß expression. In both cases, the behavioural response to TLR activation was sexually dimorphic: females were more resilient. However, dissociation was observed between the resilient female mice behaviour and the levels of gene cytokine expression, which was, in general, higher in the female mice. However, the metabolic shifts induced by immune activation were better correlated with the sex-dependent behavioural dimorphisms; increased levels of antioxidant potential in the female brain are intrinsic male/female metabolome differences. A common feature of both TLR4 and TLR7 activation was an increase in N-acetyl aspartate (NAA) in the PFC, which is likely be an allostatic response to the challenges as sickness behaviour is inversely correlated with NAA levels. Discussion: The results highlight how the cytokine profile induced by one PAMP cannot be extrapolated to another, but they do reveal how the manipulation of the conserved metabolome response might afford a more generic approach to the treatment of post-infection syndromes.

9.
Analyst ; 149(4): 1238-1249, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38224241

RESUMO

Background: Metabolite profiling of blood by nuclear magnetic resonance (NMR) is invaluable to clinical biomarker discovery. To ensure robustness, biomarkers require validation in large cohorts and across multiple centres. However, collection procedures are known to impact on the stability of biofluids that may, in turn, degrade biomarker signals. We trialled three blood collection tubes with the aim of solving technical challenges due to preanalytical variation in blood metabolite levels that are common in cohort studies. Methods: We first investigated global NMR-based metabolite variability between biobanks, including the large-scale UK Biobank and TwinsUK biobank of the general UK population, and more targeted biobanks derived from multicentre clinical trials relating to inflammatory bowel disease. We then compared the blood metabolome of 12 healthy adult volunteers when collected into either sodium fluoride/potassium oxalate, lithium heparin, or serum blood tubes using different pre-processing parameters. Results: Preanalytical variation in the method of blood collection strongly influences metabolite composition within and between biobanks. This variability can largely be attributed to glucose and lactate. In the healthy control cohort, the fluoride oxalate collection tube prevented fluctuation in glucose and lactate levels for 24 hours at either 4 °C or room temperature (20 °C). Conclusions: Blood collection into a fluoride oxalate collection tube appears to preserve the blood metabolome with delayed processing up to 24 hours at 4 °C. This method may be considered as an alternative when rapid processing is not feasible.


Assuntos
Fluoretos , Fluoreto de Sódio , Adulto , Humanos , Fluoreto de Sódio/química , Metabolômica/métodos , Glucose , Lactatos , Biomarcadores , Oxalatos
10.
Brain Behav Immun Health ; 33: 100686, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37767237

RESUMO

CNS inflammation, including microglial activation, in response to peripheral infections are known to contribute to the pathology of both familial and sporadic neurodegenerative disease. The relationship between Fused-in-Sarcoma Protein (FUS)-mediated disease in the transgenic FUS[1-359] animals and the systemic inflammatory response have not been explored. Here, we investigated microglial activation, inflammatory gene expression and the behavioural responses to lipopolysaccharide-induced (LPS; 0.1 mg/kg) systemic inflammation in the FUS[1-359] transgenic mice. The pathology of these mice recapitulates the key features of mutant FUS-associated familial frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Here, pre-symptomatic 8-week-old mutant or wild type controls were challenged with LPS or with saline and sucrose intake, novel cage exploration, marble burying and swimming behaviours were analyzed. The level of pro-inflammatory gene expression was also determined, and microglial activation was evaluated. In chronic experiments, to discover whether the LPS challenge would affect the onset of ALS-like paralysis, animals were evaluated for clinical signs from 5 to 7 weeks post-injection. Compared to controls, acutely challenged FUS[1-359]-tg mice exhibited decreased sucrose intake and increased floating behaviours. The FUS[1-359]-tg mice exhibited an increase in immunoreactivity for Iba1-positive cells in the prefrontal cortex and ventral horn of the spinal cord, which was accompanied by increased expression of interleukin-1ß, tumour necrosis factor, cyclooxygenase-(COX)-1 and COX-2. However, the single LPS challenge did not alter the time to development of paralysis in the FUS[1-359]-tg mice. Thus, while the acute inflammatory response was enhanced in the FUS mutant animals, it did not have a lasting impact on disease progression.

11.
Front Immunol ; 14: 1239572, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711609

RESUMO

Normally, the host immunological response to viral infection is coordinated to restore homeostasis and protect the individual from possible tissue damage. The two major approaches are adopted by the host to deal with the pathogen: resistance or tolerance. The nature of the responses often differs between species and between individuals of the same species. Resistance includes innate and adaptive immune responses to control virus replication. Disease tolerance relies on the immune response allowing the coexistence of infections in the host with minimal or no clinical signs, while maintaining sufficient viral replication for transmission. Here, we compared the virome of bats, rodents and migratory birds and the molecular mechanisms underlying symptomatic and asymptomatic disease progression. We also explore the influence of the host physiology and environmental influences on RNA virus expression and how it impacts on the whole brain transcriptome of seemingly healthy semipalmated sandpiper (Calidris pusilla) and spotted sandpiper (Actitis macularius). Three time points throughout the year were selected to understand the importance of longitudinal surveys in the characterization of the virome. We finally revisited evidence that upstream and downstream regulation of the inflammatory response is, respectively, associated with resistance and tolerance to viral infections.


Assuntos
Quirópteros , Viroses , Animais , Roedores , Aves , Tolerância Imunológica
13.
Nutrients ; 15(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37447374

RESUMO

Background. The serotonin transporter (SERT), highly expressed in the gut and brain, is implicated in metabolic processes. A genetic variant of the upstream regulatory region of the SLC6A4 gene encoding SERT, the so-called short (s) allele, in comparison with the long (l) allele, results in the decreased function of this transporter, altered serotonergic regulation, an increased risk of psychiatric pathology and type-2 diabetes and obesity, especially in older women. Aged female mice with the complete (Sert-/-: KO) or partial (Sert+/-: HET) loss of SERT exhibit more pronounced negative effects following their exposure to a Western diet in comparison to wild-type (Sert+/+: WT) animals. Aims. We hypothesized that these effects might be mediated by an altered gut microbiota, which has been shown to influence serotonin metabolism. We performed V4 16S rRNA sequencing of the gut microbiota in 12-month-old WT, KO and HET female mice that were housed on a control or Western diet for three weeks. Results. The relative abundance of 11 genera was increased, and the abundance of 6 genera was decreased in the Western-diet-housed mice compared to the controls. There were correlations between the abundance of Streptococcus and Ruminococcaceae_UCG-014 and the expression of the pro-inflammatory marker Toll-like-Receptor 4 (Tlr4) in the dorsal raphe, as well as the expression of the mitochondrial activity marker perixome-proliferator-activated-receptor-cofactor-1b (Ppargc1b) in the prefrontal cortex. Although there was no significant impact of genotype on the microbiota in animals fed with the Control diet, there were significant interactions between diet and genotype. Following FDR correction, the Western diet increased the relative abundance of Intestinimonas and Atopostipes in the KO animals, which was not observed in the other groups. Erysipelatoclostridium abundance was increased by the Western diet in the WT group but not in HET or KO animals. Conclusions. The enhanced effects of a challenge with a Western diet in SERT-deficient mice include the altered representation of several gut genera, such as Intestinimonas, Atopostipes and Erysipelatoclostridium, which are also implicated in serotonergic and lipid metabolism. The manipulation of these genera may prove useful in individuals with the short SERT allele.


Assuntos
Microbioma Gastrointestinal , Proteínas da Membrana Plasmática de Transporte de Serotonina , Camundongos , Feminino , Animais , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Dieta Ocidental/efeitos adversos , RNA Ribossômico 16S/genética , Encéfalo/metabolismo , Firmicutes/metabolismo
14.
bioRxiv ; 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37333343

RESUMO

Tuberculosis remains a large global disease burden for which treatment regimens are protracted and monitoring of disease activity difficult. Existing detection methods rely almost exclusively on bacterial culture from sputum which limits sampling to organisms on the pulmonary surface. Advances in monitoring tuberculous lesions have utilized the common glucoside [18F]FDG, yet lack specificity to the causative pathogen Mycobacterium tuberculosis (Mtb) and so do not directly correlate with pathogen viability. Here we show that a close mimic that is also positron-emitting of the non-mammalian Mtb disaccharide trehalose - 2-[18F]fluoro-2-deoxytrehalose ([18F]FDT) - can act as a mechanism-based enzyme reporter in vivo. Use of [18F]FDT in the imaging of Mtb in diverse models of disease, including non-human primates, successfully co-opts Mtb-specific processing of trehalose to allow the specific imaging of TB-associated lesions and to monitor the effects of treatment. A pyrogen-free, direct enzyme-catalyzed process for its radiochemical synthesis allows the ready production of [18F]FDT from the most globally-abundant organic 18F-containing molecule, [18F]FDG. The full, pre-clinical validation of both production method and [18F]FDT now creates a new, bacterium-specific, clinical diagnostic candidate. We anticipate that this distributable technology to generate clinical-grade [18F]FDT directly from the widely-available clinical reagent [18F]FDG, without need for either bespoke radioisotope generation or specialist chemical methods and/or facilities, could now usher in global, democratized access to a TB-specific PET tracer.

15.
EBioMedicine ; 93: 104643, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37327674

RESUMO

BACKGROUND: Socioeconomic pressures, sex, and physical health status strongly influence the development of major depressive disorder (MDD) and mask other contributing factors in small cohorts. Resilient individuals overcome adversity without the onset of psychological symptoms, but resilience, as for susceptibility, has a complex and multifaceted molecular basis. The scale and depth of the UK Biobank affords an opportunity to identify resilience biomarkers in rigorously matched, at-risk individuals. Here, we evaluated whether blood metabolites could prospectively classify and indicate a biological basis for susceptibility or resilience to MDD. METHODS: Using the UK Biobank, we employed random forests, a supervised, interpretable machine learning statistical method to determine the relative importance of sociodemographic, psychosocial, anthropometric, and physiological factors that govern the risk of prospective MDD onset (total n = 15,710). We then used propensity scores to rigorously match individuals with a history of MDD (n = 491) against a resilient subset of individuals without an MDD diagnosis (retrospectively or during follow-up; n = 491) using an array of key social, demographic, and disease-associated drivers of depression risk. 381 blood metabolites and clinical chemistry variables and 4 urine metabolites were integrated to generate a multivariate random forest-based algorithm using 10-fold cross-validation to predict prospective MDD risk and resilience. OUTCOMES: In unmatched individuals, a first case of MDD, with a median time-to-diagnosis of 72 years, can be predicted using random forest classification probabilities with an area under the receiver operator characteristic curve (ROC AUC) of 0.89. Prospective resilience/susceptibility to MDD was then predicted with a ROC AUC of 0.72 (x˜ = 3.2 years follow-up) and 0.68 (x˜ = 7.2 years follow-up). Increased pyruvate was identified as a key biomarker of resilience to MDD and was validated retrospectively in the TwinsUK cohort. INTERPRETATION: Blood metabolites prospectively associate with substantially reduced MDD risk. Therapeutic targeting of these metabolites may provide a framework for MDD risk stratification and reduction. FUNDING: New York Academy of Sciences' Interstellar Programme Award; Novo Fonden; Lincoln Kingsgate award; Clarendon Fund; Newton-Abraham studentship (University of Oxford). The funders had no role in the development of the present study.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico , Transtorno Depressivo Maior/psicologia , Estudos Prospectivos , Estudos Retrospectivos , Biomarcadores , Algoritmos
16.
Front Mol Neurosci ; 16: 1155620, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152431

RESUMO

Introduction: The microbiota plays a critical role in modulating various aspects of host physiology, particularly through the microbiota-gut-brain (MGB) axis. However, the mechanisms that transduce and affect gut-to-brain communication are still not well understood. Recent studies have demonstrated that dysbiosis of the microbiome is associated with anxiety and depressive symptoms, which are common complications of metabolic syndrome. Germ-free (GF) animal models offer a valuable tool for studying the causal effects of microbiota on the host. Methods: We employed gene expression and nuclear magnetic resonance (NMR)-based metabolomic techniques to investigate the relationships between brain plasticity and immune gene expression, peripheral immunity, and cerebral and liver metabolism in GF and specific pathogen-free (SPF) mice. Results: Our principal findings revealed that brain acetate (p = 0.012) was significantly reduced in GF relative to SPF mice, whereas glutamate (p = 0.0013), glutamine (p = 0.0006), and N-acetyl aspartate (p = 0.0046) metabolites were increased. Notably, cFOS mRNA expression, which was significantly decreased in the prefrontal cortex of GF mice relative to SPF mice (p = 0.044), correlated with the abundance of a number of key brain metabolites altered by the GF phenotype, including glutamate and glutamine. Discussion: These results highlight the connection between the GF phenotype, altered brain metabolism, and immediate-early gene expression. The study provides insight into potential mechanisms by which microbiota can regulate neurotransmission through modulation of the host's brain and liver metabolome, which may have implications for stress-related psychiatric disorders such as anxiety.

17.
Neuropharmacology ; 235: 109565, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37150398

RESUMO

While the potential for probiotic supplements to act as adjunctive treatments for mood disorders has been widely demonstrated, the precise mode of action remains unclear. To investigate the psychotropic effects of a multi-species probiotic on emotional behaviour in male BALB/c mice, we explored the potential mechanisms of action relating to the temporal changes in the mRNA expression of brain cytokines, BDNF, central 5HT receptor and serotonin transporter (SERT) and GABA receptor in the context of probiotic induced behavioural changes. The effects of a heat-killed probiotic, independent of microbial metabolic processes were also evaluated on the same outcomes to understand whether the host response to the bacteria is more or less important than the contribution of the metabolic activity of the bacteria themselves. Results showed that probiotic supplementation reduced anxiety-like behaviours, increased time spent in the light area of the light-dark box, and decreased the expression of pro-inflammatory cytokines in the brain. Furthermore, probiotic administration elevated hippocampal BDNF and decreased GABAB1ß expression. Interestingly, the heat-killed probiotic and its membrane fraction had similar effects on emotional behaviours and gene expression in the brain. The ingestion of live and heat-killed probiotic preparations also reduced TLR2 expression in the gut. Thus, the present study reveals that the anxiolytic action of a multispecies probiotic in BALB/c mice is independent of bacterial viability. This suggests that it is the host response to probiotics, rather than microbial metabolism that facilitates the molecular changes in the brain and downstream behaviours. This article is part of the Special Issue on "Microbiome & the Brain: Mechanisms & Maladies".


Assuntos
Citocinas , Probióticos , Animais , Camundongos , Masculino , Citocinas/metabolismo , Temperatura Alta , Camundongos Endogâmicos BALB C , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ansiedade/terapia , Encéfalo/metabolismo , Probióticos/farmacologia , Expressão Gênica
18.
Lipids Health Dis ; 22(1): 54, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095493

RESUMO

Endotoxemia and sepsis induce neuroinflammation and increase the risk of neurodegenerative disorders although the mechanism by which peripheral infection leads to brain inflammation is not well understood. While circulating serum lipoproteins are known immunometabolites with the potential to modulate the acute phase response and cross the blood brain barrier, their contribution to neuroinflammation during systemic infection is unknown. The objective of this study was to elucidate the mechanisms by which lipoprotein subclasses modulate lipopolysaccharide (LPS)-induced neuroinflammation. Adult C57BL/6 mice were divided into 6 treatment groups, including a sterile saline vehicle control group (n = 9), an LPS group (n = 11), a premixed LPS + HDL group (n = 6), a premixed LPS + LDL group (n = 5), a HDL only group (n = 6) and an LDL only group (n = 3). In all cases injections were administered intraperitoneally. LPS was administered at 0.5 mg/kg, and lipoproteins were administered at 20 mg/kg. Behavioural testing and tissue collection was performed 6 h post-injection. The magnitude of peripheral and central inflammation was determined by qPCR of pro-inflammatory genes in fresh liver and brain. Metabolite profiles of liver, plasma and brain were determined by 1H NMR. Endotoxin concentration in the brain was measured by the Limulus Amoebocyte Lysate (LAL) assay. Co-administration of LPS + HDL exacerbated both peripheral and central inflammation, whilst LPS + LDL attenuated this inflammation. Metabolomic analysis identified several metabolites significantly associated with LPS-induced inflammation, which were partially rescued by LDL, but not HDL. Endotoxin was detected at significantly greater concentrations in the brains of animals that received LPS + HDL compared to LPS + saline, but not those that received LPS + LDL. These results suggest that HDL may promote neuroinflammation through direct shuttling of endotoxin to the brain. In contrast, LDL was shown to have anti-neuroinflammatory properties in this study. Our results indicate that lipoproteins may be useful targets in neuroinflammation and neurodegeneration associated with endotoxemia and sepsis.


Assuntos
Encefalite , Endotoxemia , Sepse , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Doenças Neuroinflamatórias , Camundongos Endogâmicos C57BL , Lipoproteínas , Inflamação/induzido quimicamente , Endotoxinas/efeitos adversos
19.
Nutrients ; 15(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37111100

RESUMO

Emerging evidence demonstrates that alterations to the gut microbiota can affect mood, suggesting that the microbiota-gut-brain (MGB) axis contributes to the pathogenesis of depression. Many of these pathways overlap with the way in which the gut microbiota are thought to contribute to metabolic disease progression and obesity. In rodents, prebiotics and probiotics have been shown to modulate the composition and function of the gut microbiota. Together with germ-free rodent models, probiotics have provided compelling evidence for a causal relationship between microbes, microbial metabolites, and altered neurochemical signalling and inflammatory pathways in the brain. In humans, probiotic supplementation has demonstrated modest antidepressant effects in individuals with depressive symptoms, though more studies in clinically relevant populations are needed. This review critically discusses the role of the MGB axis in depression pathophysiology, integrating preclinical and clinical evidence, as well as the putative routes of communication between the microbiota-gut interface and the brain. A critical overview of the current approaches to investigating microbiome changes in depression is provided. To effectively translate preclinical breakthroughs in MGB axis research into novel therapies, rigorous placebo-controlled trials alongside a mechanistic and biochemical understanding of prebiotic and probiotic action are required from future research.


Assuntos
Microbioma Gastrointestinal , Probióticos , Humanos , Prebióticos , Eixo Encéfalo-Intestino , Depressão/terapia , Probióticos/uso terapêutico
20.
Metabolites ; 13(3)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36984895

RESUMO

Depression and metabolic disease are common disorders that share a bidirectional relationship and continue to increase in prevalence. Maternal diet and maternal behaviour both profoundly influence the developmental trajectory of offspring during the perinatal period. At an epidemiological level, both maternal depression and obesity during pregnancy have been shown to increase the risk of neuropsychiatric disease in the subsequent generation. Considerable progress has been made to understand the mechanisms by which maternal obesity disrupts the developing offspring gut-brain axis, priming offspring for the development of affective disorders. This review outlines such mechanisms in detail, including altered maternal care, the maternal microbiome, inflammation, breast milk composition, and maternal and placental metabolites. Subsequently, offspring may be prone to developing gut-brain interaction disorders with concomitant changes to brain energy metabolism, neurotransmission, and behaviour, alongside gut dysbiosis. The gut microbiome may act as a key modifiable, and therefore treatable, feature of the relationship between maternal obesity and the offspring brain function. Further studies examining the relationship between maternal nutrition, the maternal microbiome and metabolites, and offspring neurodevelopment are warranted to identify novel therapeutic targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA