Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(11): e1011770, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37988347

RESUMO

Signalling pathways in malaria parasite remain poorly defined and major reason for this is the lack of understanding of the function of majority of parasite protein kinases and phosphatases in parasite signalling and its biology. In the present study, we have elucidated the function of Protein Kinase 2 (PfPK2), which is known to be indispensable for the survival of human malaria parasite Plasmodium falciparum. We demonstrate that it is involved in the invasion of host erythrocytes, which is critical for establishing infection. In addition, PfPK2 may also be involved in the maturation of the parasite post-invasion. PfPK2 regulates the release of microneme proteins like Apical Membrane Antigen 1 (AMA1), which facilitates the formation of Tight Junction between the merozoite and host erythrocyte- a key step in the process of invasion. Comparative phosphoproteomics studies revealed that PfPK2 may be involved in regulation of several key proteins involved in invasion and signalling. Furthermore, PfPK2 regulates the generation of cGMP and the release of calcium in the parasite, which are key second messengers for the process of invasion. These and other studies have shed light on a novel signalling pathway in which PfPK2 acts as an upstream regulator of important cGMP-calcium signalling, which plays an important role in parasite invasion.


Assuntos
Parasitos , Proteínas Quinases , Animais , Humanos , Proteínas Quinases/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Parasitos/metabolismo , Cálcio/metabolismo , Plasmodium falciparum/metabolismo , Eritrócitos/parasitologia
2.
Mol Cell Proteomics ; 22(5): 100533, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36948415

RESUMO

Mycobacterium avium is one of the prominent disease-causing bacteria in humans. It causes lymphadenitis, chronic and extrapulmonary, and disseminated infections in adults, children, and immunocompromised patients. M. avium has ∼4500 predicted protein-coding regions on average, which can help discover several variants at the proteome level. Many of them are potentially associated with virulence; thus, identifying such proteins can be a helpful feature in developing panel-based theranostics. In line with such a long-term goal, we carried out an in-depth proteomic analysis of M. avium with both data-dependent and data-independent acquisition methods. Further, a set of proteogenomic investigations were carried out using (i) a protein database for Mycobacterium tuberculosis, (ii) an M. avium genome six-frame-translated database, and (iii) a variant protein database of M. avium. A search of mass spectrometry data against M. avium protein database resulted in identifying 2954 proteins. Further, proteogenomic analyses aided in identifying 1301 novel peptide sequences and correcting translation start sites for 15 proteins. Ultimately, we created a spectral library of M. avium proteins, including novel genome search-specific peptides and variant peptides detected in this study. We validated the spectral library by a data-independent acquisition of the M. avium proteome. Thus, we present an M. avium spectral library of 29,033 peptide precursors supported by 0.4 million fragment ions for further use by the biomedical community.


Assuntos
Mycobacterium avium , Proteogenômica , Criança , Humanos , Mycobacterium avium/genética , Proteômica/métodos , Proteoma/genética , Virulência , Genoma Bacteriano , Genômica/métodos , Peptídeos/genética , Espectrometria de Massas
3.
Microrna ; 11(2): 163-174, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35507793

RESUMO

BACKGROUND: Toxoplasma gondii (T. gondii) is an intracellular zoonotic protozoan parasite known to effectively modulate the host system for its survival. A large number of microRNAs (miRNAs) regulated by different strains of T. gondii in diverse types of host cells/tissues/organs have been reported across multiple studies. OBJECTIVE: We aimed to decipher the complexity of T. gondii regulated spectrum of miRNAs to derive a set of core miRNAs central to different strains of T. gondii infection in diverse human cell lines. METHODS: We first assembled miRNAs hat are regulated by T. gondii altered across the various assortment of infections and time points of T. gondii infection in multiple cell types. For these assembled datasets, we employed specific criteria to filter the core miRNAs regulated by T. gondii. Subsequently, accounting for the spectrum of miRNA-mRNA target combinations, we applied a novel confidence criterion to extract their core experimentally-validated mRNA targets in human cell systems. RESULTS: This analysis resulted in the extraction of 74 core differentially regulated miRNAs and their 319 high-confidence mRNA targets. Based on these core miRNA-mRNA pairs, we derived the central biological processes perturbed by T. gondii in diverse human cell systems. Further, our analysis also resulted in the identification of novel autocrine/paracrine signalling factors that could be associated with host response modulated by T. gondii. CONCLUSION: The current analysis derived a set of core miRNAs, their targets, and associated biological processes fine-tuned by T. gondii for its survival within the invaded cells.


Assuntos
MicroRNAs , Toxoplasma , Toxoplasmose , Humanos , Toxoplasma/genética , MicroRNAs/genética , Toxoplasmose/genética , Toxoplasmose/parasitologia , RNA Mensageiro
4.
OMICS ; 26(3): 151-164, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35073185

RESUMO

Rice is one of the most important crops worldwide. Crop production is constrained markedly, however, by abiotic stresses such as salinity. To elucidate early stress response signaling networks involved in rice, we report in this study an original quantitative proteomic analysis of the rice seedlings subjected to short-term salt stress. We detected 570 differentially regulated proteins (DRPs) in the root sample. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis demonstrated that DRPs of the root were mainly involved in membrane trafficking, kinase activity, and ion toxicity responses. Interactome analysis revealed the central role of root proteins involved in membrane trafficking in the early response to salinity, such as cell surface receptor-like kinases (RLKs), phosphatidylinositols (PIs), calcium-dependent protein kinases 1 and 5, calcineurin B-like protein-interacting proteins, protein phosphatase 2C (PP2C) inhibitors, and abscisic acid receptors (PYL5/10), indicating activation of S-type anion channel. Furthermore, the proteogenomic analysis revealed 128 unique genome search-specific peptides with high-quality mass spectromety (MS/MS) spectra. We identified 38 novel protein-coding genes, refined the annotation of 17 existing gene models, and suggested several novel stress-responsive proteins, such as RLK5, peroxidase 27, and growth-regulating factor 2. Novel peptides had an ortholog match in the curated protein sequence set of other plant species. In conclusion, this study identifies novel stress-responsive proteins and genes of rice, thus warrant future consideration as candidates for molecular breeding of stress-tolerant crop varieties.


Assuntos
Oryza , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Percepção , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteômica , Estresse Salino/genética , Tolerância ao Sal/genética , Plântula/genética , Plântula/metabolismo , Estresse Fisiológico/genética , Espectrometria de Massas em Tandem
5.
EMBO Rep ; 23(2): e54022, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34866326

RESUMO

PfCDPK7 is an atypical member of the calcium-dependent protein kinase (CDPK) family and is crucial for the development of Plasmodium falciparum. However, the mechanisms whereby PfCDPK7 regulates parasite development remain unknown. Here, we perform quantitative phosphoproteomics and phospholipid analysis and find that PfCDPK7 promotes phosphatidylcholine (PC) synthesis by regulating two key enzymes involved in PC synthesis, phosphoethanolamine-N-methyltransferase (PMT) and ethanolamine kinase (EK). In the absence of PfCDPK7, both enzymes are hypophosphorylated and PMT is degraded. We further find that PfCDPK7 interacts with 4'-phosphorylated phosphoinositides (PIPs) generated by PI4-kinase. Inhibition of PI4K activity disrupts the vesicular localization PfCDPK7. P. falciparum PI4-kinase, PfPI4K is a prominent drug target and one of its inhibitors, MMV39048, has reached Phase I clinical trials. Using this inhibitor, we demonstrate that PfPI4K controls phospholipid biosynthesis and may act in part by regulating PfCDPK7 localization and activity. These studies not only unravel a signaling pathway involving PfPI4K/4'-PIPs and PfCDPK7 but also provide novel insights into the mechanism of action of a promising series of candidate anti-malarial drugs.


Assuntos
Malária Falciparum , Plasmodium falciparum , Humanos , Fosfolipídeos/metabolismo , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Transdução de Sinais
6.
OMICS ; 25(9): 591-604, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34468217

RESUMO

Toxoplasma gondii is one of the most widespread parasites of great relevance to planetary health. It infects approximately one-third of the world population. T. gondii establishes itself in warm-blooded animals and causes adverse health outcomes, particularly in immunocompromised patients. T. gondii is also widely used as a model organism to study other related apicomplexan parasites, which requires a deeper understanding of its molecular biology. Type I strains (GT1 and RH) of T. gondii are considered the most virulent forms. The whole-genome sequencing of T. gondii annotated 8460 predicted gene models in the parasite. To this end, the proteogenomics technology allows harnessing of mass spectrometry (MS)-derived proteomic data to unravel new protein-coding genes, not to mention validation and correction of the existing gene models. In this study using the proteogenomic approach, we report the identification of 31 novel protein-coding genes while reannotating 88 existing gene models. Notably, the genome annotations were corrected for genes, such as SAG5C, GRA6, ROP4, ROP5, and ROP26. The associated proteins are known to play important roles in host-parasite interactions, particularly in relation to parasite virulence, suppression of host immune response, and distinctively pertinent for the survival of the parasite inside the host system. These new findings offer new insights, informing planetary health broadly and the knowledge base on T. gondii virulence specifically. The proteogenomics approach also provides a concrete example to study related apicomplexan organisms of relevance to planetary health, and so as to develop new diagnostics and therapeutics against toxoplasmosis and related diseases.


Assuntos
Proteogenômica , Toxoplasma , Animais , Humanos , Proteômica , Proteínas de Protozoários/genética , Toxoplasma/genética , Virulência/genética
7.
PLoS Pathog ; 17(2): e1009325, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33635921

RESUMO

Apicomplexan parasites are causative agents of major human diseases. Calcium Dependent Protein Kinases (CDPKs) are crucial components for the intracellular development of apicomplexan parasites and are thus considered attractive drug targets. CDPK7 is an atypical member of this family, which initial characterization suggested to be critical for intracellular development of both Apicomplexa Plasmodium falciparum and Toxoplasma gondii. However, the mechanisms via which it regulates parasite replication have remained unknown. We performed quantitative phosphoproteomics of T. gondii lacking TgCDPK7 to identify its parasitic targets. Our analysis lead to the identification of several putative TgCDPK7 substrates implicated in critical processes like phospholipid (PL) synthesis and vesicular trafficking. Strikingly, phosphorylation of TgRab11a via TgCDPK7 was critical for parasite intracellular development and protein trafficking. Lipidomic analysis combined with biochemical and cellular studies confirmed that TgCDPK7 regulates phosphatidylethanolamine (PE) levels in T. gondii. These studies provide novel insights into the regulation of these processes that are critical for parasite development by TgCDPK7.


Assuntos
Lipogênese , Fosfatidiletanolaminas/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/enzimologia , Toxoplasmose/metabolismo , Vesículas Transportadoras/metabolismo , Transporte Biológico , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/parasitologia , Humanos , Fosforilação , Proteínas Quinases/genética , Proteínas de Protozoários/genética , Toxoplasma/crescimento & desenvolvimento , Toxoplasmose/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA