Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 2543, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953178

RESUMO

Many butterflies, birds, beetles, and chameleons owe their spectacular colors to the microscopic patterns within their wings, feathers, or skin. When these patterns, or photonic crystals, result in the omnidirectional reflection of commensurate wavelengths of light, it is due to a complete photonic band gap (PBG). The number of natural crystal structures known to have a PBG is relatively small, and those within the even smaller subset of notoriety, including diamond and inverse opal, have proven difficult to synthesize. Here, we report more than 150,000 photonic band calculations for thousands of natural crystal templates from which we predict 351 photonic crystal templates - including nearly 300 previously-unreported structures - that can potentially be realized for a multitude of applications and length scales, including several in the visible range via colloidal self-assembly. With this large variety of 3D photonic crystals, we also revisit and discuss oft-used primary design heuristics for PBG materials.

2.
Soft Matter ; 15(12): 2571-2579, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30830132

RESUMO

Orientational ordering is a necessary step in the crystallization of molecules and anisotropic colloids. Plastic crystals, which are possible mesophases between the fluid and fully ordered crystal, are translationally ordered but exhibit no long range orientational order. Here, we study the two-dimensional phase behavior of hard regular polygons with edge number n = 3-12. This family of particles provides a model system to isolate the effect of shape and symmetry on the existence of plastic crystal phases. We show that the symmetry group of the particle, G, and the symmetry group of the local environment in the crystal, H, together determine plastic colloidal crystal phase behavior in two dimensions. If G contains completely the symmetry elements of H, then a plastic crystal phase is absent. If G and H share some but not all nontrivial symmetry elements, then a plastic crystal phase exists with preferred particle orientations that recover the absent symmetry elements of the crystal; we call this phase the discrete plastic crystal phase. If G and H share no nontrivial symmetry elements, then a plastic crystal phase exists without preferred orientations, which we call an indiscrete plastic crystal.

3.
J Chem Phys ; 149(20): 204102, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30501271

RESUMO

The synthesis of complex materials through the self-assembly of particles at the nanoscale provides opportunities for the realization of novel material properties. However, the inverse design process to create experimentally feasible interparticle interaction strategies is uniquely challenging. Standard methods for the optimization of isotropic pair potentials tend toward overfitting, resulting in solutions with too many features and length scales that are challenging to map to mechanistic models. Here we introduce a method for the optimization of simple pair potentials that minimizes the relative entropy of the complex target structure while directly considering only those length scales most relevant for self-assembly. Our approach maximizes the relative information of a target pair distribution function with respect to an ansatz distribution function via an iterative update process. During this process, we filter high frequencies from the Fourier spectrum of the pair potential, resulting in interaction potentials that are smoother and simpler in real space and therefore likely easier to make. We show that pair potentials obtained by this method assemble their target structure more robustly with respect to optimization method parameters than potentials optimized without filtering.

4.
Sci Rep ; 5: 16997, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26593056

RESUMO

High-entropy alloys (HEAs) are new alloys that contain five or more elements in roughly-equal proportion. We present new experiments and theory on the deformation behavior of HEAs under slow stretching (straining), and observe differences, compared to conventional alloys with fewer elements. For a specific range of temperatures and strain-rates, HEAs deform in a jerky way, with sudden slips that make it difficult to precisely control the deformation. An analytic model explains these slips as avalanches of slipping weak spots and predicts the observed slip statistics, stress-strain curves, and their dependence on temperature, strain-rate, and material composition. The ratio of the weak spots' healing rate to the strain-rate is the main tuning parameter, reminiscent of the Portevin-LeChatellier effect and time-temperature superposition in polymers. Our model predictions agree with the experimental results. The proposed widely-applicable deformation mechanism is useful for deformation control and alloy design.

5.
Sci Rep ; 5: 10789, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25991412

RESUMO

The Zr-based bulk metallic glasses (BMGs) are a new family of attractive materials with good glass-forming ability and excellent mechanical properties, such as high strength and good wear resistance, which make them candidates for structural and biomedical materials. Although the mechanical behavior of BMGs has been widely investigated, their deformation mechanisms are still poorly understood. In particular, their poor ductility significantly impedes their industrial application. In the present work, we show that the ductility of Zr-based BMGs with nearly zero plasticity is improved by a laser shock peening technique. Moreover, we map the distribution of laser-induced residual stresses via the micro-slot cutting method, and then predict them using a three-dimensional finite-element method coupled with a confined plasma model. Reasonable agreement is achieved between the experimental and modeling results. The analyses of serrated flows reveal plentiful and useful information of the underlying deformation process. Our work provides an easy and effective way to extend the ductility of intrinsically-brittle BMGs, opening up wider applications of these materials.

6.
Phys Rev Lett ; 112(15): 155501, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24785049

RESUMO

For the first time in metallic glasses, we extract both the exponents and scaling functions that describe the nature, statistics, and dynamics of slip events during slow deformation, according to a simple mean field model. We model the slips as avalanches of rearrangements of atoms in coupled shear transformation zones (STZs). Using high temporal resolution measurements, we find the predicted, different statistics and dynamics for small and large slips thereby excluding self-organized criticality. The agreement between model and data across numerous independent measures provides evidence for slip avalanches of STZs as the elementary mechanism of inhomogeneous deformation in metallic glasses.

7.
Sci Rep ; 4: 4382, 2014 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-24632786

RESUMO

Ingots of the bulk metallic glass (BMG), Zr64.13Cu15.75Ni10.12Al10 in atomic percent (at. %), are compressed at slow strain rates. The deformation behavior is characterized by discrete, jerky stress-drop bursts (serrations). Here we present a quantitative theory for the serration behavior of BMGs, which is a critical issue for the understanding of the deformation characteristics of BMGs. The mean-field interaction model predicts the scaling behavior of the distribution, D(S), of avalanche sizes, S, in the experiments. D(S) follows a power law multiplied by an exponentially-decaying scaling function. The size of the largest observed avalanche depends on experimental tuning-parameters, such as either imposed strain rate or stress. Similar to crystalline materials, the plasticity of BMGs reflects tuned criticality showing remarkable quantitative agreement with the slip statistics of slowly-compressed nanocrystals. The results imply that material-evaluation methods based on slip statistics apply to both crystalline and BMG materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA