Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38006168

RESUMO

The synthesis of biocompatible and bioresorbable composite materials, such as a "polymer matrix-mineral constituent," stimulating the natural growth of living tissues and the restoration of damaged parts of the body, is one of the challenging problems in regenerative medicine and materials science. Composite films of bioresorbable polymer of polyvinylpyrrolidone (PVP) and hydroxyapatite (HA) were obtained. HA was synthesized in situ in the polymer solution. We applied electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) approaches to study the composite films' properties. The application of EPR in two frequency ranges allowed us to derive spectroscopic parameters of the nitrogen-based light and radiation-induced paramagnetic centers in HA, PVP and PVP-HA with high accuracy. It was shown that PVP did not significantly affect the EPR spectral and relaxation parameters of the radiation-induced paramagnetic centers in HA, while light-induced centers were detected only in PVP. Magic angle spinning (MAS) 1H NMR showed the presence of two signals at 4.7 ppm and -2.15 ppm, attributed to "free" water and hydroxyl groups, while the single line was attributed to 31P. NMR relaxation measurements for 1H and 31P showed that the relaxation decays were multicomponent processes that can be described by three components of the transverse relaxation times. The obtained results demonstrated that the applied magnetic resonance methods can be used for the quality control of PVP-HA composites and, potentially, for the development of analytical tools to follow the processes of sample treatment, resorption, and degradation.

2.
Materials (Basel) ; 16(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37374661

RESUMO

An alternative approach for the currently used replacement therapy in dentistry is to apply materials that restore tooth tissue. Among them, composites, based on biopolymers with calcium phosphates, and cells can be applied. In the present work, a composite based on polyvinylpyrrolidone (PVP) and alginate (Alg) with carbonate hydroxyapatite (CHA) was prepared and characterized. The composite was investigated by X-ray diffraction, infrared spectroscopy, electron paramagnetic resonance (EPR) and scanning electron microscopy methods, and the microstructure, porosity, and swelling properties of the material were described. In vitro studies included the MTT test using mouse fibroblasts, and adhesion and survivability tests with human dental pulp stem cells (DPSC). The mineral component of the composite corresponded to CHA with an admixture of amorphous calcium phosphate. The presence of a bond between the polymer matrix and CHA particles was shown by EPR. The structure of the material was represented by micro- (30-190 µm) and nano-pores (average 8.71 ± 4.15 nm). The swelling measurements attested that CHA addition increased the polymer matrix hydrophilicity by 200%. In vitro studies demonstrated the biocompatibility of PVP-Alg-CHA (95 ± 5% cell viability), and DPSC located inside the pores. It was concluded that the PVP-Alg-CHA porous composite is promising for dentistry applications.

3.
J Funct Biomater ; 14(5)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37233360

RESUMO

Ion-substituted calcium phosphate (CP) coatings have been extensively studied as promising materials for biomedical implants due to their ability to enhance biocompatibility, osteoconductivity, and bone formation. This systematic review aims to provide a comprehensive analysis of the current state of the art in ion-doped CP-based coatings for orthopaedic and dental implant applications. Specifically, this review evaluates the effects of ion addition on the physicochemical, mechanical, and biological properties of CP coatings. The review also identifies the contribution and additional effects (in a separate or a synergistic way) of different components used together with ion-doped CP for advanced composite coatings. In the final part, the effects of antibacterial coatings on specific bacteria strains are reported. The present review could be of interest to researchers, clinicians, and industry professionals involved in the development and application of CP coatings for orthopaedic and dental implants.

4.
Polymers (Basel) ; 15(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37177252

RESUMO

A composite material based on electrospinning printed polyhydroxybutyrate fibers impregnated with brushite cement containing Zn substitution was developed for bone implant applications. Powder X-ray Diffraction (PXRD), Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy were applied for materials characterization. Soaking the composite in Ringer's solution led to the transformation of brushite into apatite phase, accompanied by the morphology changes of the material. The bending strength of the composite material was measured to be 3.1 ± 0.5 MPa. NCTC mouse fibroblast cells were used to demonstrate by means of the MTT test that the developed material was not cytotoxic. The behavior of the human dental pulp stem cells on the surface of the composite material investigated by the direct contact method was similar to the control. It was found that the developed Zn containing composite material possessed antibacterial properties, as testified by microbiology investigations against bacteria strains of Escherichia coli and Staphylococcus aureus. Thus, the developed composite material is promising for the treatment of damaged tissues with bacterial infection complications.

5.
Molecules ; 27(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36144818

RESUMO

Sr2+-substituted ß-tricalcium phosphate (ß-TCP) powders were synthesized using the mechano-chemical activation method with subsequent pressing and sintering to obtain ceramics. The concentration of Sr2+ in the samples was 0 (non-substituted TCP, as a reference), 3.33 (0.1SrTCP), and 16.67 (0.5SrTCP) mol.% with the expected Ca3(PO4)2, Ca2.9Sr0.1(PO4)2, and Ca2.5Sr0.5(PO4)2 formulas, respectively. The chemical compositions were confirmed by the energy-dispersive X-ray spectrometry (EDX) and the inductively coupled plasma optical emission spectroscopy (ICP-OES) methods. The study of the phase composition of the synthesized powders and ceramics by the powder X-ray diffraction (PXRD) method revealed that ß-TCP is the main phase in all compounds except 0.1SrTCP, in which the apatite (Ap)-type phase was predominant. TCP and 0.5SrTCP ceramics were soaked in the standard saline solution for 21 days, and the phase analysis revealed the partial dissolution of the initial ß-TCP phase with the formation of the Ap-type phase and changes in the microstructure of the ceramics. The Sr2+ ion release from the ceramic was measured by the ICP-OES. The human osteosarcoma MG-63 cell line was used for viability, adhesion, spreading, and cytocompatibility studies. The results show that the introduction of Sr2+ ions into the ß-TCP improved cell adhesion, proliferation, and cytocompatibility of the prepared samples. The obtained results provide a base for the application of the Sr2+-substituted ceramics in model experiments in vivo.


Assuntos
Solução Salina , Estrôncio , Apatitas/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Cerâmica/química , Cerâmica/farmacologia , Humanos , Íons , Pós , Estrôncio/química , Estrôncio/farmacologia , Difração de Raios X
6.
Nanomaterials (Basel) ; 12(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35269340

RESUMO

Gadolinium-containing calcium phosphates are promising contrast agents for various bioimaging modalities. Gadolinium-substituted tricalcium phosphate (TCP) powders with 0.51 wt% of gadolinium (0.01Gd-TCP) and 5.06 wt% of (0.1Gd-TCP) were synthesized by two methods: precipitation from aqueous solutions of salts (1) (Gd-TCP-pc) and mechano-chemical activation (2) (Gd-TCP-ma). The phase composition of the product depends on the synthesis method. The product of synthesis (1) was composed of ß-TCP (main phase, 96%), apatite/chlorapatite (2%), and calcium pyrophosphate (2%), after heat treatment at 900 °C. The product of synthesis (2) was represented by ß-TCP (main phase, 73%), apatite/chlorapatite (20%), and calcium pyrophosphate (7%), after heat treatment at 900 °C. The substitution of Ca2+ ions by Gd3+ in both ß-TCP (main phase) and apatite (admixture) phases was proved by the electron paramagnetic resonance technique. The thermal stability and specific surface area of the Gd-TCP powders synthesized by two methods were significantly different. The method of synthesis also influenced the size and morphology of the prepared Gd-TCP powders. In the case of synthesis route (1), powders with particle sizes of tens of nanometers were obtained, while in the case of synthesis (2), the particle size was hundreds of nanometers, as revealed by transmission electron microscopy. The Gd-TCP ceramics microstructure investigated by scanning electron microscopy was different depending on the synthesis route. In the case of (1), ceramics with grains of 1-50 µm, pore sizes of 1-10 µm, and a bending strength of about 30 MPa were obtained; in the case of (2), the ceramics grain size was 0.4-1.4 µm, the pore size was 2 µm, and a bending strength of about 39 MPa was prepared. The antimicrobial activity of powders was tested for four bacteria (S. aureus, E. coli, S. typhimurium, and E. faecalis) and one fungus (C. albicans), and there was roughly 30% of inhibition of the micro-organism's growth. The metabolic activity of the NCTC L929 cell and viability of the human dental pulp stem cell study demonstrated the absence of toxic effects for all the prepared ceramic materials doped with Gd ions, with no difference for the synthesis route.

7.
Bioact Mater ; 6(10): 3383-3395, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33817417

RESUMO

New materials are required for bone healing in regenerative medicine able to temporarily substitute damaged bone and to be subsequently resorbed and replaced by endogenous tissues. Taking inspiration from basic composition of the mammalian bones, composed of collagen, apatite and a number of substitution ions, among them magnesium (Mg2+), in this work, novel composite scaffolds composed of collagen(10%)-hydroxyapatite (HAp)(90%) and collagen(10%)-HAp(80%)-Mg(10%) were developed. The lyophilization was used for composites preparation. An insight into the nanostructural nature of the developed scaffolds was performed by Scanning Electron Microscopy coupled with Energy Dispersive X-Ray and Transmission Electron Microscopy coupled with Energy Dispersive X-Ray. The HAp nanocrystallite clusters and Mg nanoparticles were homogeneously distributed within the scaffolds and adherent to the collagen fibrils. The samples were tested for degradation in Simulated Body Fluid (SBF) solution by soaking for up to 28 days. The release of Mg from collagen(10%)-HAp(80%)-Mg(10%) composite during the period of up to 21 days was attested, this composite being characterized by a decreased degradation rate with respect to the composite without Mg. The developed composite materials are promising for applications as bone substitute materials favouring bone healing and regeneration.

8.
Materials (Basel) ; 13(19)2020 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-33022953

RESUMO

Bioactive manganese (Mn)-doped ceramic coatings for intraosseous titanium (Ti) implants are developed. Arc plasma deposition procedure is used for coatings preparation. X-ray Diffraction, Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy, and Electron Paramagnetic Resonance (EPR) methods are applied for coatings characterization. The coatings are homogeneous, composed of the main phase α-tricalcium phosphate (α-TCP) (about 67%) and the minor phase hydroxyapatite (about 33%), and the Mn content is 2.3 wt%. EPR spectroscopy demonstrates that the Mn ions are incorporated in the TCP structure and are present in the coating in Mn2+ and Mn3+ oxidation states, being aggregated in clusters. The wetting contact angle of the deposited coatings is suitable for cells' adhesion and proliferation. In vitro soaking in physiological solution for 90 days leads to a drastic change in phase composition; the transformation into calcium carbonate and octacalcium phosphate takes place, and no more Mn is present. The absence of antibacterial activity against Escherichia coli, Enterococcus faecalis, and Pseudomonas aeruginosa bacteria strains is observed. A study of the metabolic activity of mouse fibroblasts of the NCTC L929 cell line on the coatings using the MTT (dye compound 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test demonstrates that there is no toxic effect on the cell culture. Moreover, the coating material supports the adhesion and proliferation of the cells. A good adhesion, spreading, and proliferative activity of the human tooth postnatal dental pulp stem cells (DPSC) is demonstrated. The developed coatings are promising for implant application in orthopedics and dentistry.

9.
Mater Sci Eng C Mater Biol Appl ; 114: 111044, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32994000

RESUMO

A self-setting bone cement containing ß-tricalcium phosphate (TCP) supplemented with boron nitride nanotubes (BNNTs, 1 wt%) was synthesized and analyzed in situ for its kinetics of hardening and selected physicochemical and biological properties. Moderately delayed due to the presence of BNNTs, the hardening reaction involved the transformation of the TCP precursor to the dicalcium phosphate (DCPD) product. In spite of the short-lived chemical transformations in the cement upon its hardening, the structural changes in it were extended. As a result, the compressive strength increased from day 1 to day 7 of the hardening reaction and the presence of BNNTs further increased it by ~25%. Fitting of the time-resolved energy-dispersive diffractometric data to the Johnson-Mehl-Avrami-Kolmogorov crystallization kinetics model conformed to the one-dimensional nucleation at a variable rate during the growth of elongated DCPD crystals from round TCP grains. For the first seven days of growth of human mesenchymal stem cells (hMSCs) on the cement, no difference in their proliferation was observed compared to the control. However, between the 7th and the 21st day, the cell proliferation decreased compared to the control because of the ongoing stem cell differentiation toward the osteoblast phenotype. This differentiation was accompanied by the higher expression of alkaline phosphatase, an early marker of hMSC differentiation into a pre-osteoblast phenotype. The TCP cement supplemented with BNNTs was able to thwart the production of reactive oxygen species (ROS) in hMSCs treated with H2O2/Fe2+ and bring the ROS levels down to the concentrations detected in the control cells, indicating the good capability of the material to protect the cells against the ROS-associated damage. Simultaneously, the cement increased the expression of mediators of inflammation in a co-culture of osteoblasts and macrophages, thus attesting to the direct reciprocity between the degrees of inflammation and stimulated new bone production.


Assuntos
Cimentos Ósseos , Nanotubos , Cimentos Ósseos/farmacologia , Compostos de Boro , Fosfatos de Cálcio , Humanos , Peróxido de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA