Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
JMIR Res Protoc ; 13: e52957, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687985

RESUMO

BACKGROUND: Healthy lifestyle interventions have a positive impact on multiple disease trajectories, including cancer-related outcomes. Specifically, appropriate habitual physical activity, adequate sleep, and a regular wholesome diet are of paramount importance for the wellness and supportive care of survivors of cancer. Mobile health (mHealth) apps have the potential to support novel tailored lifestyle interventions. OBJECTIVE: This observational pilot study aims to assess the feasibility of mHealth multidimensional longitudinal monitoring in survivors of cancer. The primary objective is to test the compliance (user engagement) with the monitoring solution. Secondary objectives include recording clinically relevant subjective and objective measures collected through the digital solution. METHODS: This is a monocentric pilot study taking place in Bangor, Wales, United Kingdom. We plan to enroll up to 100 adult survivors of cancer not receiving toxic anticancer treatment, who will provide self-reported behavioral data recorded via a dedicated app and validated questionnaires and objective data automatically collected by a paired smartwatch over 16 weeks. The participants will continue with their normal routine surveillance care for their cancer. The primary end point is feasibility (eg, mHealth monitoring acceptability). Composite secondary end points include clinically relevant patient-reported outcome measures (eg, the Edmonton Symptom Assessment System score) and objective physiological measures (eg, step counts). This trial received a favorable ethical review in May 2023 (Integrated Research Application System 301068). RESULTS: This study is part of an array of pilots within a European Union funded project, entitled "GATEKEEPER," conducted at different sites across Europe and covering various chronic diseases. Study accrual is anticipated to commence in January 2024 and continue until June 2024. It is hypothesized that mHealth monitoring will be feasible in survivors of cancer; specifically, at least 50% (50/100) of the participants will engage with the app at least once a week in 8 of the 16 study weeks. CONCLUSIONS: In a population with potentially complex clinical needs, this pilot study will test the feasibility of multidimensional remote monitoring of patient-reported outcomes and physiological parameters. Satisfactory compliance with the use of the app and smartwatch, whether confirmed or infirmed through this study, will be propaedeutic to the development of innovative mHealth interventions in survivors of cancer. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/52957.


Assuntos
Sobreviventes de Câncer , Telemedicina , Humanos , Projetos Piloto , Telemedicina/métodos , Masculino , Feminino , Adulto , Aplicativos Móveis , Pessoa de Meia-Idade , Neoplasias/terapia , País de Gales , Estudos de Viabilidade , Idoso , Estudos Observacionais como Assunto/métodos
2.
J Med Internet Res ; 25: e42187, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37379060

RESUMO

BACKGROUND: The World Health Organization's strategy toward healthy aging fosters person-centered integrated care sustained by eHealth systems. However, there is a need for standardized frameworks or platforms accommodating and interconnecting multiple of these systems while ensuring secure, relevant, fair, trust-based data sharing and use. The H2020 project GATEKEEPER aims to implement and test an open-source, European, standard-based, interoperable, and secure framework serving broad populations of aging citizens with heterogeneous health needs. OBJECTIVE: We aim to describe the rationale for the selection of an optimal group of settings for the multinational large-scale piloting of the GATEKEEPER platform. METHODS: The selection of implementation sites and reference use cases (RUCs) was based on the adoption of a double stratification pyramid reflecting the overall health of target populations and the intensity of proposed interventions; the identification of a principles guiding implementation site selection; and the elaboration of guidelines for RUC selection, ensuring clinical relevance and scientific excellence while covering the whole spectrum of citizen complexities and intervention intensities. RESULTS: Seven European countries were selected, covering Europe's geographical and socioeconomic heterogeneity: Cyprus, Germany, Greece, Italy, Poland, Spain, and the United Kingdom. These were complemented by the following 3 Asian pilots: Hong Kong, Singapore, and Taiwan. Implementation sites consisted of local ecosystems, including health care organizations and partners from industry, civil society, academia, and government, prioritizing the highly rated European Innovation Partnership on Active and Healthy Aging reference sites. RUCs covered the whole spectrum of chronic diseases, citizen complexities, and intervention intensities while privileging clinical relevance and scientific rigor. These included lifestyle-related early detection and interventions, using artificial intelligence-based digital coaches to promote healthy lifestyle and delay the onset or worsening of chronic diseases in healthy citizens; chronic obstructive pulmonary disease and heart failure decompensations management, proposing integrated care management based on advanced wearable monitoring and machine learning (ML) to predict decompensations; management of glycemic status in diabetes mellitus, based on beat to beat monitoring and short-term ML-based prediction of glycemic dynamics; treatment decision support systems for Parkinson disease, continuously monitoring motor and nonmotor complications to trigger enhanced treatment strategies; primary and secondary stroke prevention, using a coaching app and educational simulations with virtual and augmented reality; management of multimorbid older patients or patients with cancer, exploring novel chronic care models based on digital coaching, and advanced monitoring and ML; high blood pressure management, with ML-based predictions based on different intensities of monitoring through self-managed apps; and COVID-19 management, with integrated management tools limiting physical contact among actors. CONCLUSIONS: This paper provides a methodology for selecting adequate settings for the large-scale piloting of eHealth frameworks and exemplifies with the decisions taken in GATEKEEPER the current views of the WHO and European Commission while moving forward toward a European Data Space.


Assuntos
COVID-19 , Telemedicina , Humanos , Inteligência Artificial , Ecossistema , Telemedicina/métodos , Doença Crônica , Chipre
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA