Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Diseases ; 12(7)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39057124

RESUMO

Few data are available on the role of SBRT re-irradiation for isolated recurrences. We designed a prospective phase I study to evaluate the maximum tolerated dose (MTD) of SBRT for thoracic re-irradiation, for peripheral lung lesions. RT was delivered with a dose escalation design from 30 Gy in five fractions up to 50 Gy in five fractions. The primary end point was the definition of the maximum tolerated dose (MTD) of SBRT for thoracic re-irradiation. The dose-limiting toxicity was pneumonia ≥G3. Fifteen patients were enrolled. No cases of pneumonia ≥G3 occurred in any of our cohorts. Only one patient developed pneumonia G1 during treatment. Three patients developed acute toxicities that included dyspnea G1, cardiac failure G3, and chest wall pain. One patient developed G3 late toxicity with acute coronary syndrome. After a median follow-up of 21 months (range 3.6-29.1 months), six patients (40%) had a local relapse. Distant relapse occurred in five patients (33.3%). At the last follow-up, six patients died, all but two due to progressive disease. SBRT dose escalation for thoracic re-irradiation is an effective and well-tolerated option for patients with inoperable lung lesions after a first thoracic RT with acceptable acute and late toxicities.

2.
Nat Nanotechnol ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080489

RESUMO

Condensation of RNA and proteins is central to cellular functions, and the ability to program it would be valuable in synthetic biology and synthetic cell science. Here we introduce a modular platform for engineering synthetic RNA condensates from tailor-made, branched RNA nanostructures that fold and assemble co-transcriptionally. Up to three orthogonal condensates can form simultaneously and selectively accumulate fluorophores through embedded fluorescent light-up aptamers. The RNA condensates can be expressed within synthetic cells to produce membrane-less organelles with a controlled number and relative size, and showing the ability to capture proteins using selective protein-binding aptamers. The affinity between otherwise orthogonal nanostructures can be modulated by introducing dedicated linker constructs, enabling the production of bi-phasic RNA condensates with a prescribed degree of interphase mixing and diverse morphologies. The in situ expression of programmable RNA condensates could underpin the spatial organization of functionalities in both biological and synthetic cells.

3.
Animals (Basel) ; 14(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38891668

RESUMO

Respiratory diseases significantly affect intensive pig finishing farms, causing production losses and increased antimicrobial use (AMU). Lesion scoring at slaughter has been recognized as a beneficial practice to evaluate herd management. The integrated analysis of abattoir lesion scores and AMU data could improve decision-making by providing feedback to veterinarians and farmers on the effectiveness of antimicrobial treatments, thus rationalizing their use. This study compared lung and pleural lesion scores collected at Italian pig slaughterhouses with on-farm AMU, estimated through a treatment index per 100 days (TI100). Overall, 24,752 pig carcasses, belonging to 236 batches from 113 finishing farms, were inspected. Bronchopneumonia and chronic pleuritis were detected in 55% and 48% of the examined pigs, respectively. Antimicrobials were administered in 97% of the farms during the six months prior to slaughter (median TI100 = 5.2), notwithstanding compliance with the mandatory withdrawal period. EMA category B (critical) antimicrobials were administered in 15.2% of cases (median TI100 = 0.06). The lung score was not associated with the total AMU, but significant, positive associations were found with the past use of critical antimicrobials (p = 0.041) and macrolides (p = 0.044). This result highlights the potential of abattoir lung lesion monitoring to rationalize antimicrobial stewardship efforts, contributing to AMU reduction.

4.
RSC Chem Biol ; 5(5): 426-438, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38725910

RESUMO

The development of methods that enabled genome-wide mapping of DNA G-quadruplex structures in chromatin has played a critical role in providing evidence to support the formation of these structures in living cells. Over the past decade, a variety of methods aimed at mapping G-quadruplexes have been reported in the literature. In this critical review, we have sought to provide a technical overview on the relative strengths and weaknesses of the genomics approaches currently available, offering step-by-step guidance to assessing experimental needs and selecting the most appropriate method to achieve effective genome-wide mapping of DNA G-quadruplexes.

5.
Vet Sci ; 11(4)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38668448

RESUMO

Respiratory diseases significantly affect intensive pig farming, causing production losses and increased antimicrobial use. Accurate classification of lung lesions is crucial for effective diagnostics and disease management. The integration of non-destructive and rapid techniques would be beneficial to enhance overall efficiency in addressing these challenges. This study investigates the potential of near-infrared (NIR) spectroscopy in classifying pig lung tissues. The NIR spectra (908-1676 nm) of 101 lungs from weaned pigs were analyzed using a portable instrument and subjected to multivariate analysis. Two distinct discriminant models were developed to differentiate normal (N), congested (C), and pathological (P) lung tissues, as well as catarrhal bronchopneumonia (CBP), fibrinous pleuropneumonia (FPP), and interstitial pneumonia (IP) patterns. Overall, the model tailored for discriminating among pathological lesions demonstrated superior classification performances. Major challenges arose in categorizing C lungs, which exhibited a misclassification rate of 30% with N and P tissues, and FPP samples, with 30% incorrectly recognized as CBP samples. Conversely, IP and CBP lungs were all identified with accuracy, precision, and sensitivity higher than 90%. In conclusion, this study provides a promising proof of concept for using NIR spectroscopy to recognize and categorize pig lungs with different pathological lesions, offering prospects for efficient diagnostic strategies.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38668828

RESUMO

In mental health promotion, recovery is a process that leads to personal strengthening, control over crucial life decisions, and participation in communities through relevant professional, educational, or family social roles. Co-production, a key aspect of the recovery-oriented approach, emphasizes collaboration and active participation of people with mental health first-hand experience, family members, and citizens. Even though studies on co-production are limited and fragmented, there is evidence that co-production leads to positive outcomes, including improved well-being, empowerment, social connectedness, inclusion, and personal competencies. This study aimed to contribute to the limited literature on co-production in mental health by evaluating the co-production process in a non-profit mental health organization and its impact on empowerment processes and personal recovery outcomes. The research team adopted a collaborative approach and conducted qualitative research, including 13 individual semi-structured interviews and four focus groups. Results showed how the different dimensions of empowerment are promoted in and by the organization: (a) co-production processes supported empowered outcomes on an individual level, such as self-awareness; (b) the organization was perceived to promote empowering processes, such as a sense of safeness and protection; (c) co-production was a mean to build and maintain a network with mental health services that acknowledges the dignity and value of each subjectivity and promotes participation and recovery. Peer support workers were seen as facilitators of mental illness management, and the organization as a place for sharing mental health experiences and fostering individual recovery journeys.

7.
Vet Res ; 55(1): 48, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594744

RESUMO

Actinobacillus pleuropneumoniae (APP) is a bacterium frequently associated with porcine pleuropneumonia. The acute form of the disease is highly contagious and often fatal, resulting in significant economic losses for pig farmers. Serotype diversity and antimicrobial resistance (AMR) of APP strains circulating in north Italian farms from 2015 to 2022 were evaluated retrospectively to investigate APP epidemiology in the area. A total of 572 strains isolated from outbreaks occurring in 337 different swine farms were analysed. The majority of isolates belonged to serotypes 9/11 (39.2%) and 2 (28.1%) and serotype diversity increased during the study period, up to nine different serotypes isolated in 2022. The most common resistances were against tetracycline (53% of isolates) and ampicillin (33%), followed by enrofloxacin, florfenicol and trimethoprim/sulfamethoxazole (23% each). Multidrug resistance (MDR) was common, with a third of isolates showing resistance to more than three antimicrobial classes. Resistance to the different classes and MDR varied significantly depending on the serotype. In particular, the widespread serotype 9/11 was strongly associated with florfenicol and enrofloxacin resistance and showed the highest proportion of MDR isolates. Serotype 5, although less common, showed instead a concerning proportion of trimethoprim/sulfamethoxazole resistance. Our results highlight how the typing of circulating serotypes and the analysis of their antimicrobial susceptibility profile are crucial to effectively manage APP infection and improve antimicrobial stewardship.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Pleuropneumonia , Doenças dos Suínos , Tianfenicol/análogos & derivados , Suínos , Animais , Sorogrupo , Testes de Sensibilidade Microbiana/veterinária , Enrofloxacina , Fazendas , Estudos Retrospectivos , Pleuropneumonia/epidemiologia , Pleuropneumonia/veterinária , Pleuropneumonia/microbiologia , Antibacterianos/farmacologia , Sulfametoxazol/farmacologia , Trimetoprima/farmacologia , Itália/epidemiologia , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/microbiologia , Infecções por Actinobacillus/epidemiologia , Infecções por Actinobacillus/veterinária , Infecções por Actinobacillus/microbiologia , Sorotipagem/veterinária
8.
Methods Mol Biol ; 2795: 149-158, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38594536

RESUMO

RNA molecules play crucial roles in gene expression regulation and cellular signaling, and these functions are governed by the formation of RNA secondary and tertiary structures. These structures are highly dynamic and subject to rapid changes in response to environmental cues, temperature in particular. Thermosensitive RNA secondary structures have been harnessed by multiple organisms to survey their temperature environment and to adjust gene expression accordingly. It is thus highly desirable to observe RNA structural changes in real time over a range of temperatures. Multiple approaches have been developed to study structural dynamics, but many of these require extensive processing of the RNA, large amounts of RNA input, and/or cannot be applied under physiological conditions. Here, we describe the use of a dually fluorescently labeled RNA oligonucleotide (containing a predicted hairpin structure) to monitor subtle RNA structural dynamics in vitro by Förster resonance energy transfer (FRET) and circular dichroism (CD) spectroscopy. These approaches can be employed under physiologically relevant conditions over a range of temperatures and with RNA concentrations as low as 200 nM; they enable us to observe RNA structural dynamics in real time and to correlate these dynamics with changes in biological processes such as translation.


Assuntos
Transferência Ressonante de Energia de Fluorescência , RNA , RNA/química , Temperatura , Dicroísmo Circular , Oligonucleotídeos
9.
Antibiotics (Basel) ; 13(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38534639

RESUMO

Optimising antimicrobial usage (AMU) in livestock is pivotal to counteract the emergence of antimicrobial resistance. We analysed AMU in more than 1000 cattle herds over 11 years (2008-2018) in the Aosta Valley (Italy), a region where 80% of farms house less than 50 cattle. Dairy cows accounted for over 95% of AMU. AMU was estimated using the defined daily dose animal for Italy (DDDAit) per biomass for the whole herd and a treatment incidence 100 (TI100) for cows. Average annual herd-level AMU was low, with 3.6 DDDAit/biomass (range: 3.2-4.0) and 1.2 TI100 in cows (range: 1.1-1.3). Third and fourth generation cephalosporins, which are critical for human medicine, represented almost 10% of usage, and intramammary antimicrobials accounted for over 60%. We detected significant downward temporal trends in total AMU, as well as a positive relationship with herd size. The magnitude of such effects was small, leaving scant room for further reduction. However, the frequent use of critical antimicrobials and intramammary products should be addressed, following the principles of prudent AMU. Our findings highlight the importance of monitoring AMU even in low-production, smallholding contexts where a low usage is expected, to identify any deficiencies and implement interventions for further AMU optimisation.

10.
J Am Chem Soc ; 146(1): 1009-1018, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38151240

RESUMO

Over the past decade, appreciation of the roles of G-quadruplex (G4) structures in cellular regulation and maintenance has rapidly grown, making the establishment of robust methods to visualize G4s increasingly important. Fluorescent probes are commonly used for G4 detection in vitro; however, achieving sufficient selectivity to detect G4s in a dense and structurally diverse cellular environment is challenging. The use of fluorescent probes for G4 detection is further complicated by variations of probe uptake into cells, which may affect fluorescence intensity independently of G4 abundance. In this work, we report an alternative small-molecule approach to visualize G4s that does not rely on fluorescence intensity switch-on and, thus, does not require the use of molecules with exclusive G4 binding selectivity. Specifically, we have developed a novel thiazole orange derivative, TOR-G4, that exhibits a unique fluorescence lifetime when bound to G4s compared to other structures, allowing G4 binding to be sensitively distinguished from non-G4 binding, independent of the local probe concentration. Furthermore, TOR-G4 primarily colocalizes with RNA in the cytoplasm and nucleoli of cells, making it the first lifetime-based probe validated for exploring the emerging roles of RNA G4s in cellulo.


Assuntos
Corantes Fluorescentes , Quadruplex G , Corantes Fluorescentes/química , RNA , Microscopia de Fluorescência , Citoplasma/metabolismo
11.
Nat Commun ; 14(1): 8272, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092738

RESUMO

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative diseases that exist on a clinico-pathogenetic spectrum, designated ALS/FTD. The most common genetic cause of ALS/FTD is expansion of the intronic hexanucleotide repeat (GGGGCC)n in C9orf72. Here, we investigate the formation of nucleic acid secondary structures in these expansion repeats, and their role in generating condensates characteristic of ALS/FTD. We observe significant aggregation of the hexanucleotide sequence (GGGGCC)n, which we associate to the formation of multimolecular G-quadruplexes (mG4s) by using a range of biophysical techniques. Exposing the condensates to G4-unfolding conditions leads to prompt disassembly, highlighting the key role of mG4-formation in the condensation process. We further validate the biological relevance of our findings by detecting an increased prevalence of G4-structures in C9orf72 mutant human motor neurons when compared to healthy motor neurons by staining with a G4-selective fluorescent probe, revealing signal in putative condensates. Our findings strongly suggest that RNA G-rich repetitive sequences can form protein-free condensates sustained by multimolecular G-quadruplexes, highlighting their potential relevance as therapeutic targets for C9orf72 mutation-related ALS/FTD.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Quadruplex G , Humanos , Demência Frontotemporal/genética , Esclerose Lateral Amiotrófica/genética , RNA/genética , RNA/química , Proteína C9orf72/genética , Expansão das Repetições de DNA/genética
12.
EMBO J ; 42(22): e114334, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37781931

RESUMO

Sequences that form DNA secondary structures, such as G-quadruplexes (G4s) and intercalated-Motifs (iMs), are abundant in the human genome and play various physiological roles. However, they can also interfere with replication and threaten genome stability. Multiple lines of evidence suggest G4s inhibit replication, but the underlying mechanism remains unclear. Moreover, evidence of how iMs affect the replisome is lacking. Here, we reconstitute replication of physiologically derived structure-forming sequences to find that a single G4 or iM arrest DNA replication. Direct single-molecule structure detection within solid-state nanopores reveals structures form as a consequence of replication. Combined genetic and biophysical characterisation establishes that structure stability and probability of structure formation are key determinants of replisome arrest. Mechanistically, replication arrest is caused by impaired synthesis, resulting in helicase-polymerase uncoupling. Significantly, iMs also induce breakage of nascent DNA. Finally, stalled forks are only rescued by a specialised helicase, Pif1, but not Rrm3, Sgs1, Chl1 or Hrq1. Altogether, we provide a mechanism for quadruplex structure formation and resolution during replication and highlight G4s and iMs as endogenous sources of replication stress.


Assuntos
DNA , Quadruplex G , Humanos , Genoma Humano , Nucleotidiltransferases , Replicação do DNA
13.
Vet Sci ; 10(9)2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37756075

RESUMO

Gastric lesions in pigs cause welfare and economic losses. Their prevalence in heavy pigs reared for premium products (e.g., Parma ham) requires further investigation. Stress, nutrition, and farm management are known risk factors, but the effects of steroidal and non-steroidal anti-inflammatory drugs (NSAIDs) are largely unknown. The aim of this study was to evaluate the prevalence of gastric lesions in Italian heavy pigs and their possible association with the use of anti-inflammatory drugs. A total of 9371 pig stomachs from 76 farms were evaluated. Among these, 20.3% showed no lesions, while 30.7%, 42.1%, and 6.8% were scored 1, 2 and 3, respectively. A tendency for an inverse relationship with farm size emerged. The use of steroids and NSAIDs was estimated by calculating a treatment incidence per 1000 (TI1000) in a subset of 36 farms. At least one prescription for NSAIDs and/or steroids was found in 80.6% of the farms (55.6% used NSAIDs and 63.9% used steroids). Median TI1000 was 0.07 (range: 0-30.1) and 0.18 (range: 0-6.2) for NSAIDs and steroids, respectively. Gastric scores were positively associated with NSAID use, but not with steroid use. Although the role of these drugs in gastric lesions needs to be further clarified, these findings suggest a cautious use of non-selective NSAIDs.

14.
Chembiochem ; 24(12): e202300265, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37146230

RESUMO

G-quadruplexes (G4s) are nucleic acid secondary structures that have been linked to the functional regulation of eukaryotic organisms. G4s have been extensively characterised in humans and emerging evidence suggests that they might also be biologically relevant for human pathogens. This indicates that G4s might represent a novel class of therapeutic targets for tackling infectious diseases. Bioinformatic studies revealed a high prevalence of putative quadruplex-forming sequences (PQSs) in the genome of protozoans, which highlights their potential roles in regulating vital processes of these parasites, including DNA transcription and replication. In this work, we focus on the neglected trypanosomatid parasites, Trypanosoma and Leishmania spp., which cause debilitating and deadly diseases across the poorest populations worldwide. We review three examples where G4-formation might be key to modulate transcriptional activity in trypanosomatids, providing an overview of experimental approaches that can be used to exploit the regulatory roles and relevance of these structures to fight parasitic infections.


Assuntos
Quadruplex G , Parasitos , Trypanosoma , Animais , Humanos , Parasitos/genética , Trypanosoma/genética , DNA/química , Genoma
15.
Chembiochem ; 24(8): e202300093, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36942862

RESUMO

This symposium is the third PSL (Paris Sciences & Lettres) Chemical Biology meeting (2016, 2019, 2023) held at Institut Curie. This initiative originally started at Institut de Chimie des Substances Naturelles (ICSN) in Gif-sur-Yvette (2013, 2014), under the directorship of Professor Max Malacria, with a strong focus on chemistry. It was then continued at the Institut Curie (2015) covering a larger scope, before becoming the official PSL Chemical Biology meeting. This latest edition was postponed twice for the reasons that we know. This has given us the opportunity to invite additional speakers of great standing. This year, Institut Curie hosted around 300 participants, including 220 on site and over 80 online. The pandemic has had, at least, the virtue of promoting online meetings, which we came to realize is not perfect but has its own merits. In particular, it enables those with restricted time and resources to take part in events and meetings, which can now accommodate unlimited participants. We apologize to all those who could not attend in person this time due to space limitation at Institut Curie.


Assuntos
Biologia , Humanos , Paris
16.
Radiat Oncol ; 18(1): 28, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750848

RESUMO

BACKGROUND: Comparative prospective data regarding different radiosurgery (SRS) modalities for treating brain metastases (BMs) from solid tumors are not available. To investigate with a single institute phase III randomized trial whether SRS executed with linac (Arm-B) is superior to a dedicated multi-source gamma-ray stereotactic platform (Arm-A). METHODS: Adults patients with 1-4 BMs from solid tumors up to 30 mm in maximum diameter were randomly assigned to arms A and B. The primary endpoint was cumulative incidence of symptomatic (grade 2-3) radionecrosis (CIRN). Secondary endpoints were local progression cumulative incidence (CILP), distant brain failure, disease-free survival (DFS), and overall survival (OS). RESULTS: A total of 251 patients were randomly assigned to Arm-A (121) or Arm-B (130). The 1-year RN cumulative incidence was 6.7% in whole cohort, 3.8% (95% CI 1.9-7.4%) in Arm-B, and 9.3% (95% CI 6.2-13.8%) in the Arm-A (p = 0.43). CIRN was influenced by target volume irradiated only for the Arm-A (p << 0.001; HR 1.36 [95% CI 1.25-1.48]). Symptomatic RN occurred in 56 cases at a median time of 10.3 months (range 1.15-54.8 months), 27 in the Arm-B at a median time of 15.9 months (range 4.9-54.8 months), and 29 in the Arm-A at a median time of 6.9 months (1.2-32.3 months), without statistically significant differences between the two arms. No statistically significant differences were recorded between the two arms in CILP, BDF, DFS or OS. The mean beam-on time to deliver SRS was 49.0 ± 36.2 min in Arm-A, and 3.1 ± 1.6 min in Arm-B. CONCLUSIONS: Given the technical differences between the treatment platforms investigated in this single-institution study, linac-based SRS (Arm-B) did not lead to significantly lower grade 2-3 RN rates versus the multi-source gamma-ray system (Arm-A) in a population of patients with limited brain metastases of small volume. No significant difference in local control was observed between both arms. For Arm-B, the treatment delivery time was significantly lower than for Arm-A. TRIAL REGISTRATION: ClinicalTrials.gov Identifier NCT02355613.


Assuntos
Neoplasias Encefálicas , Radiocirurgia , Adulto , Humanos , Radiocirurgia/métodos , Estudos Prospectivos , Estudos Retrospectivos , Neoplasias Encefálicas/secundário , Intervalo Livre de Progressão , Resultado do Tratamento
17.
Chem Commun (Camb) ; 58(92): 12753-12762, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36281554

RESUMO

Guanine-rich DNA sequences are known to fold into secondary structures called G-quadruplexes (G4s), which can form from either individual DNA strands (intra-molecular) or multiple DNA strands (inter-molecular, iG4s). Intra-molecular G4s have been the object of extensive biological investigation due to their enrichment in gene-promoters and telomers. On the other hand, iG4s have never been considered in biological contexts, as the interaction between distal sequences of DNA to form an iG4 in cells was always deemed as highly unlikely. In this feature article, we challenge this dogma by presenting our recent discovery of the first human protein (CSB) displaying astonishing picomolar affinity and binding selectivity for iG4s. These findings suggest potential for iG4 structures to form in cells and highlight the need of further studies to unravel the fundamental biological roles of these inter-molecular DNA structures. Furthermore, we discuss how the potential for formation of iG4s in neuronal cells, triggered by repeat expansions in the C9orf72 gene, can lead to the formation of nucleic-acids based pathological aggregates in neurodegenerative diseases like ALS and FTD. Finally, based on our recent work on short LNA-modified probes, we provide a prespective on how the rational design of G4-selective chemical tools can be leveraged to further elucidate the biological relevance of iG4 structures in the context of ageing-related diseases.


Assuntos
Quadruplex G , Humanos , DNA/química , Telômero , Guanina , Estrutura Molecular
18.
Genes (Basel) ; 13(9)2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-36140833

RESUMO

Regulation of the epigenome is critical for healthy cell function but can become disrupted with age, leading to aberrant epigenetic profiles including altered DNA methylation. Recent studies have indicated that DNA methylation homeostasis can be compromised by the formation of DNA secondary structures known as G-quadruplexes (G4s), which form in guanine-rich regions of the genome. G4s can be recognised and bound by certain methylation-regulating enzymes, and in turn perturb the surrounding methylation architecture. However, the effect G4 formation has on DNA methylation at critical epigenetic sites remains elusive and poorly explored. In this work, we investigate the association between G4 sequences and prominent DNA methylation sites, termed 'ageing clocks', that act as bona fide dysregulated regions in aged and cancerous cells. Using a combination of in vitro (G4-seq) and in cellulo (BG4-ChIP) G4 distribution maps, we show that ageing clocks sites are significantly enriched with G4-forming sequences. The observed enrichment also varies across species and cell lines, being least significant in healthy cells and more pronounced in tumorigenic cells. Overall, our results suggest a biological significance of G4s in the realm of DNA methylation, which may be important for further deciphering the driving forces of diseases characterised by epigenetic abnormality, including ageing.


Assuntos
Quadruplex G , Neoplasias , Idoso , Envelhecimento/genética , DNA/genética , Metilação de DNA/genética , Guanina , Humanos , Neoplasias/genética
19.
Nucleic Acids Res ; 50(13): 7247-7259, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35801856

RESUMO

G-quadruplexes (G4s) are well known non-canonical DNA secondary structures that can form in human cells. Most of the tools available to investigate G4-biology rely on small molecule ligands that stabilise these structures. However, the development of probes that disrupt G4s is equally important to study their biology. In this study, we investigated the disruption of G4s using Locked Nucleic Acids (LNA) as invader probes. We demonstrated that strategic positioning of LNA-modifications within short oligonucleotides (10 nts.) can significantly accelerate the rate of G4-disruption. Single-molecule experiments revealed that short LNA-probes can promote disruption of G4s with mechanical stability sufficient to stall polymerases. We corroborated this using a single-step extension assay, revealing that short LNA-probes can relieve replication dependent polymerase-stalling at G4 sites. We further demonstrated the potential of such LNA-based probes to study G4-biology in cells. By using a dual-luciferase assay, we found that short LNA probes can enhance the expression of c-KIT to levels similar to those observed when the c-KIT promoter is mutated to prevent the formation of the c-KIT1 G4. Collectively, our data suggest a potential use of rationally designed LNA-modified oligonucleotides as an accessible chemical-biology tool for disrupting individual G4s and interrogating their biological functions in cells.


Assuntos
Quadruplex G , Sondas de Oligonucleotídeos/química , Oligonucleotídeos/química , DNA/química , Humanos , Regiões Promotoras Genéticas
20.
Nano Lett ; 22(2): 602-611, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35026112

RESUMO

Thanks to its biocompatibility, versatility, and programmable interactions, DNA has been proposed as a building block for functional, stimuli-responsive frameworks with applications in biosensing, tissue engineering, and drug delivery. Of particular importance for in vivo applications is the possibility of making such nanomaterials responsive to physiological stimuli. Here, we demonstrate how combining noncanonical DNA G-quadruplex (G4) structures with amphiphilic DNA constructs yields nanostructures, which we termed "Quad-Stars", capable of assembling into responsive hydrogel particles via a straightforward, enzyme-free, one-pot reaction. The embedded G4 structures allow one to trigger and control the assembly/disassembly in a reversible fashion by adding or removing K+ ions. Furthermore, the hydrogel aggregates can be photo-disassembled upon near-UV irradiation in the presence of a porphyrin photosensitizer. The combined reversibility of assembly, responsiveness, and cargo-loading capabilities of the hydrophobic moieties make Quad-Stars a promising candidate for biosensors and responsive drug delivery carriers.


Assuntos
Quadruplex G , Nanoestruturas , Cátions , DNA/química , Hidrogéis/química , Nanoestruturas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA