Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
EMBO Mol Med ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304759

RESUMO

The beneficial effects of Neural Precursor Cell (NPC) transplantation in several neurological disorders are well established and they are generally mediated by the secretion of immunomodulatory and neurotrophic molecules. We therefore investigated whether Rett syndrome (RTT), that represents the first cause of severe intellectual disability in girls, might benefit from NPC-based therapy. Using in vitro co-cultures, we demonstrate that, by sensing the pathological context, NPC-secreted factors induce the recovery of morphological and synaptic defects typical of Mecp2 deficient neurons. In vivo, we prove that intracerebral transplantation of NPCs in RTT mice significantly ameliorates neurological functions. To uncover the molecular mechanisms underpinning the mediated benefic effects, we analyzed the transcriptional profile of the cerebellum of transplanted animals, disclosing the possible involvement of the Interferon γ (IFNγ) pathway. Accordingly, we report the capacity of IFNγ to rescue synaptic defects, as well as motor and cognitive alterations in Mecp2 deficient models, thereby suggesting this molecular pathway as a potential therapeutic target for RTT.

2.
EMBO Rep ; 25(3): 991-1021, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38243137

RESUMO

Neuronal maturation is the phase during which neurons acquire their final characteristics in terms of morphology, electrical activity, and metabolism. However, little is known about the metabolic pathways governing neuronal maturation. Here, we investigate the contribution of the main metabolic pathways, namely glucose, glutamine, and fatty acid oxidation, during the maturation of primary rat hippocampal neurons. Blunting glucose oxidation through the genetic and chemical inhibition of the mitochondrial pyruvate transporter reveals that this protein is critical for the production of glutamate, which is required for neuronal arborization, proper dendritic elongation, and spine formation. Glutamate supplementation in the early phase of differentiation restores morphological defects and synaptic function in mitochondrial pyruvate transporter-inhibited cells. Furthermore, the selective activation of metabotropic glutamate receptors restores the impairment of neuronal differentiation due to the reduced generation of glucose-derived glutamate and rescues synaptic local translation. Fatty acid oxidation does not impact neuronal maturation. Whereas glutamine metabolism is important for mitochondria, it is not for endogenous glutamate production. Our results provide insights into the role of glucose-derived glutamate as a key player in neuronal terminal differentiation.


Assuntos
Glutamina , Transportadores de Ácidos Monocarboxílicos , Ratos , Animais , Glutamina/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neurônios/metabolismo , Ácido Glutâmico/metabolismo , Glucose/metabolismo , Ácidos Graxos/metabolismo
3.
Cells ; 12(17)2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37681912

RESUMO

Ataxia-Telangiectasia Mutated (ATM) is a serine/threonine protein kinase principally known to orchestrate DNA repair processes upon DNA double-strand breaks (DSBs). Mutations in the Atm gene lead to Ataxia-Telangiectasia (AT), a recessive disorder characterized by ataxic movements consequent to cerebellar atrophy or dysfunction, along with immune alterations, genomic instability, and predisposition to cancer. AT patients show variable phenotypes ranging from neurologic abnormalities and cognitive impairments to more recently described neuropsychiatric features pointing to symptoms hardly ascribable to the canonical functions of ATM in DNA damage response (DDR). Indeed, evidence suggests that cognitive abilities rely on the proper functioning of DSB machinery and specific synaptic changes in central neurons of ATM-deficient mice unveiled unexpected roles of ATM at the synapse. Thus, in the present review, upon a brief recall of DNA damage responses, we focus our attention on the role of ATM in neuronal physiology and pathology and we discuss recent findings showing structural and functional changes in hippocampal and cortical synapses of AT mouse models. Collectively, a deeper knowledge of ATM-dependent mechanisms in neurons is necessary not only for a better comprehension of AT neurological phenotypes, but also for a higher understanding of the pathological mechanisms in neurodevelopmental and degenerative disorders involving ATM dysfunctions.


Assuntos
Ataxia Telangiectasia , Doenças Neurodegenerativas , Animais , Camundongos , Ataxia Telangiectasia/genética , Reparo do DNA , Interneurônios , Neurônios , Humanos
4.
Toxins (Basel) ; 15(9)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37755976

RESUMO

Botulinum neurotoxins (BoNTs) are zinc endopeptidases produced by the Clostridium genus of anerobic bacteria, largely known for their ability to cleave synaptic proteins, leading to neuromuscular paralysis. In the central nervous system, BoNTs are known to block the release of glutamate neurotransmitter, and for this reason, researchers explored the possible therapeutic action in disorders characterized by neuronal hyperactivity, such as epilepsy. Thus, using multidisciplinary approaches and models of experimental epilepsy, we investigated the pharmacological potential of BoNT/E serotype. In this review, written in memory of Prof. Matteo Caleo, a pioneer in these studies, we go back over the hypotheses and experimental approaches that led us to the conclusion that intrahippocampal administration of BoNT/E (i) displays anticonvulsant effects if prophylactically delivered in a model of acute generalized seizures; (ii) does not have any antiepileptogenic action after the induction of status epilepticus; (iii) reduces frequency of spontaneous seizures in a model of recurrent seizures if delivered during the chronic phase but in a transient manner. Indeed, the control on spontaneous seizures stops when BoNT/E effects are off (few days), thus limiting its pharmacological potential in humans.

5.
Cells ; 11(15)2022 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-35892573

RESUMO

Arthritides are a highly heterogeneous group of disorders that include two major clinical entities, localized joint disorders such as osteoarthritis (OA) and systemic autoimmune-driven diseases such as rheumatoid arthritis (RA). Arthritides are characterized by chronic debilitating musculoskeletal conditions and systemic chronic inflammation. Poor mental health is also one of the most common comorbidities of arthritides. Depressive symptoms which are most prevalent, negatively impact patient global assessment diminishing the probability of achieving the target of clinical remission. Here, we investigated new insights into mechanisms that link different joint disorders to poor mental health, and to this issue, we explored the action of the synovial fluid-derived extracellular vesicles (EVs) on neuronal function. Our data show that the exposure of neurons to different concentrations of EVs derived from both RA and OA synovial fluids (RA-EVs and OA-EVs) leads to increased excitatory synaptic transmission but acts on specific modifications on excitatory or inhibitory synapses, as evidenced by electrophysiological and confocal experiments carried out in hippocampal cultures. The treatment of neurons with EVs membrane is also responsible for generating similar effects to those found with intact EVs suggesting that changes in neuronal ability arise upon EVs membrane molecules' interactions with neurons. In humans with arthritides, we found that nearly half of patients (37.5%) showed clinically significant psychiatric symptoms (CGIs score ≥ 3), and at least mild anxiety (HAM-A ≥ 7) or depression (MADRS and HAM-D ≥ 7); interestingly, these individuals revealed an increased concentration of synovial EVs. In conclusion, our data showing opposite changes at the excitatory and inhibitory levels in neurons treated with OA- and RA-EVs, lay the scientific basis for personalized medicine in OA and RA patients, and identify EVs as new potential actionable biomarkers in patients with OA/RA with poor mental health.


Assuntos
Artrite Reumatoide , Vesículas Extracelulares , Osteoartrite , Artrite Reumatoide/diagnóstico , Hipocampo , Humanos , Transtornos do Humor , Líquido Sinovial
6.
Cell Death Dis ; 13(7): 616, 2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842432

RESUMO

Interest in the function of ataxia-telangiectasia-mutated protein (ATM) is extensively growing as evidenced by preclinical studies that continuously link ATM with new intracellular pathways. Here, we exploited Atm+/- and Atm-/- mice and demonstrate that cognitive defects are rescued by the delivery of the antidepressant Fluoxetine (Fluox). Fluox increases levels of the chloride intruder NKCC1 exclusively at hippocampal level suggesting an ATM context-specificity. A deeper investigation of synaptic composition unveils increased Gluk-1 and Gluk-5 subunit-containing kainate receptors (KARs) levels in the hippocampus, but not in the cortex, of Atm+/- and Atm-/- mice. Analysis of postsynaptic fractions and confocal studies indicates that KARs are presynaptic while in vitro and ex vivo electrophysiology that are fully active. These changes are (i) linked to KCC2 activity, as the KCC2 blockade in Atm+/- developing neurons results in reduced KARs levels and (ii) developmental regulated. Indeed, the pharmacological inhibition of ATM kinase in adults produces different changes as identified by RNA-seq investigation. Our data display how ATM affects both inhibitory and excitatory neurotransmission, extending its role to a variety of neurological and psychiatric disorders.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Hipocampo , Simportadores , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Hipocampo/metabolismo , Humanos , Camundongos , Neurônios/metabolismo , Receptores de Ácido Caínico , Simportadores/genética , Simportadores/metabolismo , Transmissão Sináptica/fisiologia
7.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613509

RESUMO

CDKL5 deficiency disorder (CDD) is an X-linked neurodevelopmental disorder characterised by early-onset drug-resistant epilepsy and impaired cognitive and motor skills. CDD is caused by mutations in cyclin-dependent kinase-like 5 (CDKL5), which plays a well-known role in regulating excitatory neurotransmission, while its effect on neuronal inhibition has been poorly investigated. We explored the potential role of CDKL5 in the inhibitory compartment in Cdkl5-KO male mice and primary hippocampal neurons and found that CDKL5 interacts with gephyrin and collybistin, two crucial organisers of the inhibitory postsynaptic sites. Through molecular and electrophysiological approaches, we demonstrated that CDKL5 loss causes a reduced number of gephyrin puncta and surface exposed γ2 subunit-containing GABAA receptors, impacting the frequency of miniature inhibitory postsynaptic currents, which we ascribe to a postsynaptic function of CDKL5. In line with previous data showing that CDKL5 loss impacts microtubule (MT) dynamics, we showed that treatment with pregnenolone-methyl-ether (PME), which promotes MT dynamics, rescues the above defects. The impact of CDKL5 deficiency on inhibitory neurotransmission might explain the presence of drug-resistant epilepsy and cognitive defects in CDD patients. Moreover, our results may pave the way for drug-based therapies that could bypass the need for CDKL5 and provide effective therapeutic strategies for CDD patients.


Assuntos
Neuroesteroides , Espasmos Infantis , Masculino , Camundongos , Animais , Neuroesteroides/uso terapêutico , Pregnenolona/farmacologia , Espasmos Infantis/genética , Éteres , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética
8.
JCI Insight ; 6(3)2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33373327

RESUMO

Impairment of the GABAergic system has been reported in epilepsy, autism, attention deficit hyperactivity disorder, and schizophrenia. We recently demonstrated that ataxia telangiectasia mutated (ATM) directly shapes the development of the GABAergic system. Here, we show for the first time to our knowledge how the abnormal expression of ATM affects the pathological condition of autism. We exploited 2 different animal models of autism, the methyl CpG binding protein 2-null (Mecp2y/-) mouse model of Rett syndrome and mice prenatally exposed to valproic acid, and found increased ATM levels. Accordingly, treatment with the specific ATM kinase inhibitor KU55933 (KU) normalized molecular, functional, and behavioral defects in these mouse models, such as (a) delayed GABAergic development, (b) hippocampal hyperexcitability, (c) low cognitive performances, and (d) social impairments. Mechanistically, we demonstrate that KU administration to WT hippocampal neurons leads to (a) higher early growth response 4 activity on Kcc2b promoter, (b) increased expression of Mecp2, and (c) potentiated GABA transmission. These results provide evidence and molecular substrates for the pharmacological development of ATM inhibition in autism spectrum disorders.


Assuntos
Transtorno do Espectro Autista/tratamento farmacológico , Animais , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Transtorno do Espectro Autista/fisiopatologia , Transtorno do Espectro Autista/psicologia , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Reparo do DNA , Modelos Animais de Doenças , Feminino , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Masculino , Proteína 2 de Ligação a Metil-CpG/deficiência , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfolinas/farmacologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Inibidores de Proteínas Quinases/farmacologia , Pironas/farmacologia , Síndrome de Rett/tratamento farmacológico , Síndrome de Rett/fisiopatologia , Síndrome de Rett/psicologia , Simportadores/genética , Simportadores/metabolismo , Ácido Valproico/toxicidade , Cotransportadores de K e Cl-
9.
Front Med (Lausanne) ; 7: 589079, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33365319

RESUMO

Neuronal stimulation is an emerging field of research focused on the management and treatment of various diseases through the reestablishment of physiological homeostasis. Electrical vagus nerve stimulation has recently been proposed as a revolutionary therapeutic option for rheumatoid arthritis (RA) in combination with or even as a replacement for conventional and biological drugs. In the past few years, disruption of the autonomic system has been linked to RA onset and activity. Novel research on the link between the autonomic nervous system and the immune system (immune-autonomics) has paved the way for the development of innovative RA management strategies. Clinical evidence supports this approach. Cardiovascular involvement, in terms of reduced baroreflex sensitivity and heart rate variability-derived indices, and mood disorders, common comorbidities in patients with RA, have been linked to autonomic nervous system dysfunction, which in turn is influenced by increased levels of circulating pro-inflammatory cytokines. This narrative review provides an overview of the autonomic nervous system and RA connection, discussing most of the common cardiac and mental health-related RA comorbidities and their potential relationships to systemic and joint inflammation.

10.
Brain Commun ; 2(2): fcaa086, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33094279

RESUMO

Regulation of actin cytoskeleton dynamics in dendritic spines is crucial for learning and memory formation. Hence, defects in the actin cytoskeleton pathways are a biological trait of several brain diseases, including Alzheimer's disease. Here, we describe a novel synaptic mechanism governed by the cyclase-associated protein 2, which is required for structural plasticity phenomena and completely disrupted in Alzheimer's disease. We report that the formation of cyclase-associated protein 2 dimers through its Cys32 is important for cyclase-associated protein 2 binding to cofilin and for actin turnover. The Cys32-dependent cyclase-associated protein 2 homodimerization and association to cofilin are triggered by long-term potentiation and are required for long-term potentiation-induced cofilin translocation into spines, spine remodelling and the potentiation of synaptic transmission. This mechanism is specifically affected in the hippocampus, but not in the superior frontal gyrus, of both Alzheimer's disease patients and APP/PS1 mice, where cyclase-associated protein 2 is down-regulated and cyclase-associated protein 2 dimer synaptic levels are reduced. Notably, cyclase-associated protein 2 levels in the cerebrospinal fluid are significantly increased in Alzheimer's disease patients but not in subjects affected by frontotemporal dementia. In Alzheimer's disease hippocampi, cofilin association to cyclase-associated protein 2 dimer/monomer is altered and cofilin is aberrantly localized in spines. Taken together, these results provide novel insights into structural plasticity mechanisms that are defective in Alzheimer's disease.

11.
Cells ; 9(9)2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32858941

RESUMO

Despite that the human autosomal recessive disease ataxia telangiectasia (A-T) is a rare pathology, interest in the function of ataxia-telangiectasia mutated protein (ATM) is extensive. From a clinical point of view, the role of ATM in the central nervous system (CNS) is the most impacting, as motor disability is the predominant symptom affecting A-T patients. Coherently, spino-cerebellar neurodegeneration is the principal hallmark of A-T and other CNS regions such as dentate and olivary nuclei and brain stem are implicated in A-T pathophysiology. Recently, several preclinical studies also highlighted the involvement of ATM in the cerebral cortex and hippocampus, thus extending A-T symptomatology to new brain areas and pathways. Here, we review old and recent evidence that largely demonstrates not only the historical ATM account in DNA damage response and cell cycle regulation, but the multiple pathways through which ATM controls oxidative stress homeostasis, insulin signalling pathways, epigenetic regulation, synaptic transmission, and excitatory-inhibitory balance. We also summarise recent evidence on ATM implication in neurological and cognitive diseases beyond A-T, bringing out ATM as new pathological substrate and potential therapeutic target.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neurônios/metabolismo , Animais , Encéfalo/metabolismo , Feminino , Humanos , Masculino , Camundongos , Estresse Oxidativo , Transdução de Sinais
12.
Mol Neurobiol ; 56(10): 7136-7143, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30989630

RESUMO

A disintegrin and metalloproteinase 10 (ADAM10) is a synaptic enzyme that has been previously shown to limit amyloid-ß1-42 (Aß1-42) peptide formation in Alzheimer's disease (AD). Furthermore, ADAM10 participates to spine shaping through the cleavage of adhesion molecules and its activity is under the control of synaptic plasticity events. In particular, long-term depression (LTD) promotes ADAM10 synaptic localization triggering its forward trafficking to the synapse, while long-term potentiation elicits ADAM10 internalization. Here, we show that a short-term in vitro exposure to Aß1-42 oligomers, at a concentration capable of inducing synaptic depression and spine loss, triggers an increase in ADAM10 synaptic localization in hippocampal neuronal cultures. However, the Aß1-42 oligomers-induced synaptic depression does not foster ADAM10 delivery to the synapse, as the physiological LTD, but impairs ADAM10 endocytosis. Moreover, Aß1-42 oligomers-induced inhibition of ADAM10 internalization requires neuronal activity and the activation of the NMDA receptors. These data suggest that, at the synaptic level, Aß1-42 oligomers trigger an aberrant plasticity mechanism according to which Aß1-42 oligomers can downregulate Aß generation through the modulation of ADAM10 synaptic availability. Moreover, the increased activity of ADAM10 towards its synaptic substrates could also affect the structural plasticity phenomena. Overall, these data shed new lights on the strict and complex relationship existing between synaptic activity and the primary mechanisms of AD pathogenesis.


Assuntos
Proteína ADAM10/metabolismo , Peptídeos beta-Amiloides/metabolismo , Plasticidade Neuronal , Sinapses/metabolismo , Animais , Endocitose , Neurônios/metabolismo , Neurônios/ultraestrutura , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo
13.
Mol Neurobiol ; 56(7): 4838-4854, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30402709

RESUMO

MeCP2 is a fundamental protein associated with several neurological disorders, including Rett syndrome. It is considered a multifunctional factor with a prominent role in regulating chromatin structure; however, a full comprehension of the consequences of its deficiency is still lacking. Here, we characterize a novel mouse model of Mecp2 bearing the human mutation Y120D, which is localized in the methyl-binding domain. As most models of Mecp2, the Mecp2Y120D mouse develops a severe Rett-like phenotype. This mutation alters the interaction of the protein with chromatin, but surprisingly, it also impairs its association with corepressors independently on the involved interacting domains. These features, which become overt mainly in the mature brain, cause a more accessible and transcriptionally active chromatin structure; conversely, in the Mecp2-null brain, we find a less accessible and transcriptionally inactive chromatin. By demonstrating that different MECP2 mutations can produce concordant neurological phenotypes but discordant molecular features, we highlight the importance of considering personalized approaches for the treatment of Rett syndrome.


Assuntos
Comportamento Animal , Técnicas de Introdução de Genes , Proteína 2 de Ligação a Metil-CpG/metabolismo , Medicina de Precisão , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Cromatina/metabolismo , Feminino , Humanos , Longevidade , Masculino , Memória de Curto Prazo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Mutação/genética , Neurônios/metabolismo , Fenótipo , Síndrome de Rett
14.
Front Mol Neurosci ; 11: 313, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233314

RESUMO

Actin-based remodeling underlines spine morphogenesis and plasticity and is crucially involved in the processes that constantly reshape the circuitry of the adult brain in response to external stimuli, leading to learning and memory formation and supporting cognitive functions. Hence spine morphology and synaptic strength are tightly linked and indeed abnormalities in spine number and morphology have been described in a number of neurological disorders such as autism spectrum disorders (ASDs), schizophrenia and intellectual disabilities. We have recently demonstrated that the actin regulating protein, Epidermal growth factor receptor pathway substrate 8 (Eps8), is essential for spine growth and long term potentiation. Indeed, mice lacking Eps8 display immature filopodia-like spines, which are unable to undergo potentiation, and are impaired in cognitive functions. Furthermore, reduced levels of Eps8 have been found in the brain of a cohort of patients affected by ASD compared to controls. Here we investigated whether the lack of Eps8, which is also part of the N-methyl-d-aspartate (NMDA) receptor complex, affects the functional maturation of the postsynaptic compartment. Our results demonstrate that Eps8 knock out mice (Eps8 KO) neurons display altered synaptic expression and subunit composition of NMDA receptors (i.e., increased GluN2B-, decreased GluN2A-containing receptors) and impaired GluN2B to GluN2A subunit shift. Indeed Eps8 KO neurons display increased content of GluN2B containing NMDA receptors both at the synaptic and extrasynaptic level. Furthermore, Eps8 KO neurons display an increased content of extra-synaptic GluN2B-containing receptors, suggesting that also the synaptic targeting of NMDA receptors is affected by the lack of Eps8. These data demonstrate that, besides regulation of spine morphogenesis, Eps8 also regulates the synaptic balance of NMDA receptors subunits GluN2A and GluN2B.

15.
Hum Mol Genet ; 27(12): 2052-2063, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29618004

RESUMO

Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene cause a complex neurological disorder, characterized by infantile seizures, impairment of cognitive and motor skills and autistic features. Loss of Cdkl5 in mice affects dendritic spine maturation and dynamics but the underlying molecular mechanisms are still far from fully understood. Here we show that Cdkl5 deficiency in primary hippocampal neurons leads to deranged expression of the alpha-amino-3-hydroxy-5-methyl-4-iso-xazole propionic acid receptors (AMPA-R). In particular, a dramatic reduction of expression of the GluA2 subunit occurs concomitantly with its hyper-phosphorylation on Serine 880 and increased ubiquitination. Consequently, Cdkl5 silencing skews the composition of membrane-inserted AMPA-Rs towards the GluA2-lacking calcium-permeable form. Such derangement is likely to contribute, at least in part, to the altered synaptic functions and cognitive impairment linked to loss of Cdkl5. Importantly, we find that tianeptine, a cognitive enhancer and antidepressant drug, known to recruit and stabilise AMPA-Rs at the synaptic sites, can normalise the expression of membrane inserted AMPA-Rs as well as the number of PSD-95 clusters, suggesting its therapeutic potential for patients with mutations in CDKL5.


Assuntos
Síndromes Epilépticas/tratamento farmacológico , Proteínas Serina-Treonina Quinases/genética , Receptores de AMPA/genética , Espasmos Infantis/tratamento farmacológico , Tiazepinas/administração & dosagem , Animais , Antidepressivos/administração & dosagem , Proteína 4 Homóloga a Disks-Large/genética , Síndromes Epilépticas/genética , Síndromes Epilépticas/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Humanos , Camundongos , Mutação , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fosforilação , Cultura Primária de Células , Proteínas Serina-Treonina Quinases/deficiência , Espasmos Infantis/genética , Espasmos Infantis/patologia , Sinapses/efeitos dos fármacos , Sinapses/genética
16.
Biol Psychiatry ; 83(8): 680-691, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29146047

RESUMO

BACKGROUND: The association between maternal infection and neurodevelopmental defects in progeny is well established, although the biological mechanisms and the pathogenic trajectories involved have not been defined. METHODS: Pregnant dams were injected intraperitoneally at gestational day 9 with polyinosinic:polycytidylic acid. Neuronal development was assessed by means of electrophysiological, optical, and biochemical analyses. RESULTS: Prenatal exposure to polyinosinic:polycytidylic acid causes an imbalanced expression of the Na+-K+-2Cl- cotransporter 1 and the K+-Cl- cotransporter 2 (KCC2). This results in delayed gamma-aminobutyric acid switch and higher susceptibility to seizures, which endures up to adulthood. Chromatin immunoprecipitation experiments reveal increased binding of the repressor factor RE1-silencing transcription (also known as neuron-restrictive silencer factor) to position 509 of the KCC2 promoter that leads to downregulation of KCC2 transcription in prenatally exposed offspring. Interleukin-1 receptor type I knockout mice, which display braked immune response and no brain cytokine elevation upon maternal immune activation, do not display KCC2/Na+-K+-2Cl- cotransporter 1 imbalance when implanted in a wild-type dam and prenatally exposed. Notably, pretreatment of pregnant dams with magnesium sulfate is sufficient to prevent the early inflammatory state and the delay in excitatory-to-inhibitory switch associated to maternal immune activation. CONCLUSIONS: We provide evidence that maternal immune activation hits a key neurodevelopmental process, the excitatory-to-inhibitory gamma-aminobutyric acid switch; defects in this switch have been unequivocally linked to diseases such as autism spectrum disorder or epilepsy. These data open the avenue for a safe pharmacological treatment that may prevent the neurodevelopmental defects caused by prenatal immune activation in a specific pregnancy time window.


Assuntos
Córtex Cerebral/fisiologia , Epilepsia/etiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Complicações na Gravidez/imunologia , Efeitos Tardios da Exposição Pré-Natal/etiologia , Ácido gama-Aminobutírico , Animais , Técnicas de Cultura de Células , Modelos Animais de Doenças , Embrião de Mamíferos , Feminino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Patch-Clamp , Gravidez , Receptores Tipo I de Interleucina-1 , Simportadores , Cotransportadores de K e Cl-
17.
EBioMedicine ; 7: 191-204, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27322472

RESUMO

Alpha-synuclein (αSyn) interferes with multiple steps of synaptic activity at pre-and post-synaptic terminals, however the mechanism/s by which αSyn alters neurotransmitter release and synaptic potentiation is unclear. By atomic force microscopy we show that human αSyn, when incubated with reconstituted membrane bilayer, induces lipid rafts' fragmentation. As a consequence, ion channels and receptors are displaced from lipid rafts with consequent changes in their activity. The enhanced calcium entry leads to acute mobilization of synaptic vesicles, and exhaustion of neurotransmission at later stages. At the post-synaptic terminal, an acute increase in glutamatergic transmission, with increased density of PSD-95 puncta, is followed by disruption of the interaction between N-methyl-d-aspartate receptor (NMDAR) and PSD-95 with ensuing decrease of long term potentiation. While cholesterol loading prevents the acute effect of αSyn at the presynapse; inhibition of casein kinase 2, which appears activated by reduction of cholesterol, restores the correct localization and clustering of NMDARs.


Assuntos
Microdomínios da Membrana/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , alfa-Sinucleína/farmacologia , Animais , Cálcio/metabolismo , Células Cultivadas , Humanos , Potenciação de Longa Duração/efeitos dos fármacos , Microdomínios da Membrana/química , Camundongos , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo
18.
Cereb Cortex ; 26(10): 3879-88, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27166172

RESUMO

The capacity to guarantee the proper excitatory/inhibitory balance is one of the most critical steps during early development responsible for the correct brain organization, function, and plasticity. GABAergic neurons guide this process leading to the right structural organization, brain circuitry, and neuronal firing. Here, we identified the ataxia telangiectasia mutated (ATM), a serine/threonine protein kinase linked to DNA damage response, as crucial in regulating neurotransmission. We found that reduced levels of ATM in the hippocampal neuronal cultures produce an excitatory/inhibitory unbalance toward inhibition as indicated by the higher frequency of miniature inhibitory postsynaptic current events and an increased number of GABAergic synapses. In vivo, the increased inhibition still persists and, even if a higher excitation is also present, a reduced neuronal excitability is found as indicated by the lower action potential frequency generated in response to high-current intensity stimuli. Finally, we found an elevated extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in heterozygous hippocampi associated with lower expression levels of the ERK1/2 phosphatase PP1. Given that the neurodegenerative condition associated with genetic mutations in the Atm gene, ataxia telangiectasia, presents a variable phenotype with impairment in cognition, our molecular findings provide a logical frame for a more clear comprehension of cognitive defects in the pathology, opening to novel therapeutic strategies.


Assuntos
Hipocampo/metabolismo , Neurônios/metabolismo , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hipocampo/citologia , Hipocampo/embriologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibição Neural/fisiologia , Neurônios/citologia , Fosforilação , Simportadores/metabolismo , Técnicas de Cultura de Tecidos , Ácido gama-Aminobutírico/administração & dosagem , Cotransportadores de K e Cl-
19.
J Neurosci ; 36(16): 4624-34, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27098703

RESUMO

Growing evidence indicates that sphingosine-1-P (S1P) upregulates glutamate secretion in hippocampal neurons. However, the molecular mechanisms through which S1P enhances excitatory activity remain largely undefined. The aim of this study was to identify presynaptic targets of S1P action controlling exocytosis. Confocal analysis of rat hippocampal neurons showed that S1P applied at nanomolar concentration alters the distribution of Synapsin I (SynI), a presynaptic phosphoprotein that controls the availability of synaptic vesicles for exocytosis. S1P induced SynI relocation to extrasynaptic regions of mature neurons, as well as SynI dispersion from synaptic vesicle clusters present at axonal growth cones of developing neurons. S1P-induced SynI relocation occurred in a Ca(2+)-independent but ERK-dependent manner, likely through the activation of S1P3 receptors, as it was prevented by the S1P3 receptor selective antagonist CAY1044 and in neurons in which S1P3 receptor was silenced. Our recent evidence indicates that microvesicles (MVs) released by microglia enhance the metabolism of endogenous sphingolipids in neurons and stimulate excitatory transmission. We therefore investigated whether MVs affect SynI distribution and whether endogenous S1P could be involved in the process. Analysis of SynI immunoreactivity showed that exposure to microglial MVs induces SynI mobilization at presynaptic sites and growth cones, whereas the use of inhibitors of sphingolipid cascade identified S1P as the sphingolipid mediating SynI redistribution. Our data represent the first demonstration that S1P induces SynI mobilization from synapses, thereby indicating the phosphoprotein as a novel target through which S1P controls exocytosis. SIGNIFICANCE STATEMENT: Growing evidence indicates that the bioactive lipid sphingosine and its metabolite sphingosine-1-P (S1P) stimulate excitatory transmission. While it has been recently clarified that sphingosine influences directly the exocytotic machinery by activating the synaptic vesicle protein VAMP2 to form SNARE fusion complexes, the molecular mechanism by which S1P promotes neurotransmission remained largely undefined. In this study, we identify Synapsin I, a presynaptic phosphoprotein involved in the control of availability of synaptic vesicles for exocytosis, as the key target of S1P action. In addition, we provide evidence that S1P can be produced at mature axon terminals as well as at immature growth cones in response to microglia-derived signals, which may be important to stabilize nascent synapses and to restore or potentiate transmission.


Assuntos
Lisofosfolipídeos/fisiologia , Terminações Pré-Sinápticas/metabolismo , Esfingosina/análogos & derivados , Sinapses/metabolismo , Sinapsinas/biossíntese , Animais , Células Cultivadas , Feminino , Hipocampo/química , Hipocampo/citologia , Hipocampo/metabolismo , Lisofosfolipídeos/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Terminações Pré-Sinápticas/química , Ratos , Ratos Sprague-Dawley , Esfingosina/análise , Esfingosina/fisiologia , Sinapses/química , Sinapsinas/análise
20.
Cell Rep ; 15(1): 96-103, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27052180

RESUMO

Oxytocin and its receptor (Oxtr) play a crucial role in the postnatal transition of neuronal GABA neurotransmission from excitatory to inhibitory, a developmental process known as the GABA switch. Using hippocampal neurons from Oxtr-null mice, we show that (1) Oxtr is necessary for the correct timing of the GABA switch by upregulating activity of the chloride cotransporter KCC2, (2) Oxtr, in a very early and narrow time window, directly modulates the functional activity of KCC2 by promoting its phosphorylation and insertion/stabilization at the neuronal surface, and (3) in the absence of Oxtr, electrophysiological alterations are recorded in mature neurons, a finding consistent with a reduced level of KCC2 and increased susceptibility to seizures observed in adult Oxtr-null mice. These data identify KCC2 as a key target of oxytocin in postnatal events that may be linked to pathogenesis of neurodevelopmental disorders.


Assuntos
Potenciais Pós-Sinápticos Excitadores , Neurônios GABAérgicos/metabolismo , Potenciais Pós-Sinápticos Inibidores , Receptores de Ocitocina/metabolismo , Simportadores/metabolismo , Animais , Células Cultivadas , Neurônios GABAérgicos/fisiologia , Hipocampo/citologia , Hipocampo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Ocitocina/genética , Ácido gama-Aminobutírico/metabolismo , Cotransportadores de K e Cl-
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA