Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Radiat Biol ; 94(10): 944-950, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29431558

RESUMO

PURPOSE: This article studies the variation of the electromagnetic parameters of a suspension of zebrafish (Danio rerio) embryos to assess its potential applications to toxicological and biomedical research areas. MATERIALS AND METHODS: For this purpose, the dielectric impedance spectroscopy technique is applied to a modified coaxial line enclosing the biological suspension to be characterized in the frequency range from 100 kHz to 100 MHz. The electrical parameters of the suspension under test were obtained by fitting the impedance spectra to the resulted from the simulation of the test fixture using finite elements (FE). RESULTS: Variation of the complex permittivity of the suspensions makes possible to identify viable and non-viable embryos after a toxic exposure, as well as different stages during the blastula period of embryonic development of the zebrafish. CONCLUSIONS: The approach presented here, combining experimental and simulation techniques, may provide a basis for a non-invasive method to assess toxicity in any biological suspension.


Assuntos
Espectroscopia Dielétrica , Testes de Toxicidade , Animais , Embrião não Mamífero/efeitos da radiação , Análise de Elementos Finitos , Suspensões , Peixe-Zebra/embriologia
2.
Science ; 346(6213): 1080-4, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25378461

RESUMO

Supermassive black holes with masses of millions to billions of solar masses are commonly found in the centers of galaxies. Astronomers seek to image jet formation using radio interferometry but still suffer from insufficient angular resolution. An alternative method to resolve small structures is to measure the time variability of their emission. Here we report on gamma-ray observations of the radio galaxy IC 310 obtained with the MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov) telescopes, revealing variability with doubling time scales faster than 4.8 min. Causality constrains the size of the emission region to be smaller than 20% of the gravitational radius of its central black hole. We suggest that the emission is associated with pulsar-like particle acceleration by the electric field across a magnetospheric gap at the base of the radio jet.

3.
Science ; 322(5905): 1221-4, 2008 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-18927358

RESUMO

One fundamental question about pulsars concerns the mechanism of their pulsed electromagnetic emission. Measuring the high-end region of a pulsar's spectrum would shed light on this question. By developing a new electronic trigger, we lowered the threshold of the Major Atmospheric gamma-ray Imaging Cherenkov (MAGIC) telescope to 25 giga-electron volts. In this configuration, we detected pulsed gamma-rays from the Crab pulsar that were greater than 25 giga-electron volts, revealing a relatively high cutoff energy in the phase-averaged spectrum. This indicates that the emission occurs far out in the magnetosphere, hence excluding the polar-cap scenario as a possible explanation of our measurement. The high cutoff energy also challenges the slot-gap scenario.

4.
Science ; 320(5884): 1752-4, 2008 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-18583607

RESUMO

The atmospheric Cherenkov gamma-ray telescope MAGIC, designed for a low-energy threshold, has detected very-high-energy gamma rays from a giant flare of the distant Quasi-Stellar Radio Source (in short: radio quasar) 3C 279, at a distance of more than 5 billion light-years (a redshift of 0.536). No quasar has been observed previously in very-high-energy gamma radiation, and this is also the most distant object detected emitting gamma rays above 50 gigaelectron volts. Because high-energy gamma rays may be stopped by interacting with the diffuse background light in the universe, the observations by MAGIC imply a low amount for such light, consistent with that known from galaxy counts.

5.
Science ; 312(5781): 1771-3, 2006 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-16709745

RESUMO

Microquasars are binary star systems with relativistic radio-emitting jets. They are potential sources of cosmic rays and can be used to elucidate the physics of relativistic jets. We report the detection of variable gamma-ray emission above 100 gigaelectron volts from the microquasar LS I 61 + 303. Six orbital cycles were recorded. Several detections occur at a similar orbital phase, which suggests that the emission is periodic. The strongest gamma-ray emission is not observed when the two stars are closest to one another, implying a strong orbital modulation of the emission or absorption processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA