Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxics ; 12(4)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38668486

RESUMO

Acute intoxication with organophosphorus (OP) cholinesterase inhibitors can produce seizures that rapidly progress to life-threatening status epilepticus. Significant research effort has been focused on investigating the involvement of muscarinic acetylcholine receptors (mAChRs) in OP-induced seizure activity. In contrast, there has been far less attention on nicotinic AChRs (nAChRs) in this context. Here, we address this data gap using a combination of in vitro and in vivo models. Pharmacological antagonism and genetic deletion of α4, but not α7, nAChR subunits prevented or significantly attenuated OP-induced electrical spike activity in acute hippocampal slices and seizure activity in mice, indicating that α4 nAChR activation is necessary for neuronal hyperexcitability triggered by acute OP exposures. These findings not only suggest that therapeutic strategies for inhibiting the α4 nAChR subunit warrant further investigation as prophylactic and immediate treatments for acute OP-induced seizures, but also provide mechanistic insight into the role of the nicotinic cholinergic system in seizure generation.

2.
J Biol Chem ; 299(8): 104992, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37392848

RESUMO

Malignant hyperthermia susceptibility (MHS) is an autosomal dominant pharmacogenetic disorder that manifests as a hypermetabolic state when carriers are exposed to halogenated volatile anesthetics or depolarizing muscle relaxants. In animals, heat stress intolerance is also observed. MHS is linked to over 40 variants in RYR1 that are classified as pathogenic for diagnostic purposes. More recently, a few rare variants linked to the MHS phenotype have been reported in CACNA1S, which encodes the voltage-activated Ca2+ channel CaV1.1 that conformationally couples to RyR1 in skeletal muscle. Here, we describe a knock-in mouse line that expresses one of these putative variants, CaV1.1-R174W. Heterozygous (HET) and homozygous (HOM) CaV1.1-R174W mice survive to adulthood without overt phenotype but fail to trigger with fulminant malignant hyperthermia when exposed to halothane or moderate heat stress. All three genotypes (WT, HET, and HOM) express similar levels of CaV1.1 by quantitative PCR, Western blot, [3H]PN200-110 receptor binding and immobilization-resistant charge movement densities in flexor digitorum brevis fibers. Although HOM fibers have negligible CaV1.1 current amplitudes, HET fibers have similar amplitudes to WT, suggesting a preferential accumulation of the CaV1.1-WT protein at triad junctions in HET animals. Never-the-less both HET and HOM have slightly elevated resting free Ca2+ and Na+ measured with double barreled microelectrode in vastus lateralis that is disproportional to upregulation of transient receptor potential canonical (TRPC) 3 and TRPC6 in skeletal muscle. CaV1.1-R174W and upregulation of TRPC3/6 alone are insufficient to trigger fulminant malignant hyperthermia response to halothane and/or heat stress in HET and HOM mice.


Assuntos
Halotano , Resposta ao Choque Térmico , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta , Hipertermia Maligna , Animais , Camundongos , Cálcio/metabolismo , Halotano/farmacologia , Resposta ao Choque Térmico/genética , Hipertermia Maligna/genética , Hipertermia Maligna/metabolismo , Hipertermia Maligna/patologia , Músculo Esquelético/metabolismo , Mutação , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética
3.
Environ Sci Technol ; 55(23): 16023-16033, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34788016

RESUMO

Bromopyrroles (BrPyr) are synthesized naturally by marine sponge symbionts and produced anthropogenically as byproducts of wastewater treatment. BrPyr interact with ryanodine receptors (RYRs) and sarco/endoplasmic reticulum (SR/ER) Ca2+-ATPase (SERCA). Influences of BrPyr on the neuronal network activity remain uncharted. BrPyr analogues with differing spectra of RYR/SERCA activities were tested using RYR-null or RYR1-expressing HEK293 and murine cortical neuronal/glial cocultures (NGCs) loaded with Fluo-4 to elucidate their mechanisms altering Ca2+ dynamics. The NGC electrical spike activity (ESA) was measured from NGCs plated on multielectrode arrays. Nanomolar tetrabromopyrrole (TBP, 1) potentiated caffeine-triggered Ca2+ release independent of extracellular [Ca2+] in RYR1-HEK293, whereas higher concentrations produce slow and sustained rise in cytoplasmic [Ca2+] independent of RYR1 expression. TBP, 2,3,5-tribromopyrrole (2), pyrrole (3), 2,3,4-tribromopyrrole (4), and ethyl 4-bromopyrrole-2-carboxylate (5) added acutely to NGC showed differential potency; rank order TBP (IC50 ≈ 220 nM) > 2 ≫ 5, whereas 3 and 4 were inactive at 10 µM. TBP >2 µM elicited sustained elevation of cytoplasmic [Ca2+] and loss of neuronal viability. TBP did not alter network ESA. BrPyr from marine and anthropogenic sources are ecological signaling molecules and emerging anthropogenic pollutants of concern to environmental and human health that potently alter ER Ca2+ dynamics and warrant further investigation in vivo.


Assuntos
Adenosina Trifosfatases , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Camundongos
4.
Toxicol Sci ; 180(2): 325-341, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33483729

RESUMO

Tetramethylenedisulfotetramine (tetramine or TETS), a potent convulsant, triggers abnormal electrical spike activity (ESA) and synchronous Ca2+ oscillation (SCO) patterns in cultured neuronal networks by blocking gamma-aminobutyric acid (GABAA) receptors. Murine hippocampal neuronal/glial cocultures develop extensive dendritic connectivity between glutamatergic and GABAergic inputs and display two distinct SCO patterns when imaged with the Ca2+ indicator Fluo-4: Low amplitude SCO events (LASE) and High amplitude SCO events (HASE) that are dependent on TTX-sensitive network electrical spike activity (ESA). Acute TETS (3.0 µM) increased overall network SCO amplitude and decreased SCO frequency by stabilizing HASE and suppressing LASE while increasing ESA. In multielectrode arrays, TETS also increased burst frequency and synchronicity. In the presence of TETS (3.0 µM), the clinically used anticonvulsive perampanel (0.1-3.0 µM), a noncompetitive AMPAR antagonist, suppressed all SCO activity, whereas the GABAA receptor potentiator midazolam (1.0-30 µM), the current standard of care, reciprocally suppressed HASE and stabilized LASE. The neuroactive steroid (NAS) allopregnanolone (0.1-3.0 µM) normalized TETS-triggered patterns by selectively suppressing HASE and increasing LASE, a pharmacological pattern distinct from its epimeric form eltanolone, ganaxolone, alphaxolone, and XJ-42, which significantly potentiated TETS-triggered HASE in a biphasic manner. Cortisol failed to mitigate TETS-triggered patterns and at >1 µM augmented them. Combinations of allopregnanolone and midazolam were significantly more effective at normalizing TETS-triggered SCO patterns, ESA patterns, and more potently enhanced GABA-activated Cl- current, than either drug alone.


Assuntos
Neuroesteroides , Animais , Hidrocarbonetos Aromáticos com Pontes , Hipocampo/metabolismo , Camundongos , Midazolam/farmacologia , Nitrilas , Piridonas , Receptores de GABA-A/metabolismo , Relação Estrutura-Atividade
5.
Mol Pharmacol ; 92(1): 88-99, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28428226

RESUMO

Fluorometric imaging plate reader membrane potential dye (FMP-Red-Dye) is a proprietary tool for basic discovery and high-throughput drug screening for G-protein-coupled receptors and ion channels. We optimized and validated this potentiometric probe to assay functional modulators of heterologous expressed GABAA receptor (GABAAR) isoforms (synaptic α1ß3γ2, extrasynaptic α4ß3δ, and ß3 homopentomers). High-resolution mass spectrometry identified FMP-Red-Dye as 5,5'-(1-propen-1-yl-3-ylidene)bis[1,3-dimethyl-2-thio-barbituric acid]. GABAAR-expressing cells equilibrated with FMP-Red-Dye exhibited depolarized equilibrium membrane potentials compared with GABAAR-null cells. The channel blockers picrotoxin, fipronil, and tetramethylenedisulfotetramine, and the competitive antagonist bicuculline reduced fluorescence near the levels in GABAAR-null cells indicating that FMR-Red-Dye, a barbiturate derivative, activates GABAAR-mediated outward Cl- current in the absence of GABA. GABA caused concentration-dependent increases in fluorescence with rank order of potencies among GABAAR isoforms consistent with results from voltage-clamp experiments (EC50 values for α4ß3δ, α1ß3γ2, and ß3 homopentamers were 6 ± 1, 40 ± 11, and >18 mM, respectively), whereas GABAAR-null cells were unresponsive. Neuroactive steroids (NAS) increased fluorescence of GABAAR expressing cells in the absence of GABA and demonstrated positive allosteric modulation in the presence of GABA, whereas benzodiazepines only exhibited positive allosteric modulator (PAM) activity. Of 20 NAS tested, allopregnanolone, (3α,5α,20E)-3-hydroxy-13,24-cyclo-18-norcholan-20-ene-21-carbonitrile, eltanolone, 5ß-pregnan-3α,21-diol-20-one, and ganaxolone showed the highest potency. The FMP-Red-Dye-based assay described here provides a sensitive and quantitative method of assessing the activity of GABAAR agonists, antagonists, and PAMs on diverse GABAAR isoforms. The assay has a wide range of applications, including screening for antiseizure agents and identifying channel blockers of interest to insecticide discovery or biosecurity.


Assuntos
Corantes Fluorescentes/metabolismo , Antagonistas GABAérgicos/metabolismo , Moduladores GABAérgicos/metabolismo , Potenciais da Membrana/fisiologia , Subunidades Proteicas/metabolismo , Receptores de GABA-A/metabolismo , Animais , Relação Dose-Resposta a Droga , Corantes Fluorescentes/farmacologia , Antagonistas GABAérgicos/farmacologia , Moduladores GABAérgicos/farmacologia , Células HEK293 , Humanos , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Subunidades Proteicas/antagonistas & inibidores
6.
Am J Physiol Cell Physiol ; 303(11): C1180-91, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23034386

RESUMO

Using antibodies prepared against a unique region (exon 22-24) of rat K(+)-Cl(-) cotransporter-2 (KCC2), we confirmed that the ~140-kDa KCC2 protein is exclusively expressed in rat brain, but in chicken, we observed strong reactivity not only with the ~140-kDa KCC2 protein in brain but also a slightly larger ~145-kDa protein in heart. In silico analysis showed that while exon 22 of KCC2 is unique to this isoform in therian mammals, it is retained in KCC2's closest paralog, KCC4, of lower vertebrates, including chicken. To eliminate potential cross-reactivity with chicken KCC4, the antibodies were preadsorbed with blocking peptides prepared over the only two regions showing significant sequence identity to chicken KCC4. This completely eliminated antibody recognition of exogenously expressed chicken KCC4 but not of the ~145-kDa protein in chicken heart, indicating that chicken heart expresses KCC2. Real-time PCR confirmed robust KCC2 transcript expression in both chicken brain and heart. Chicken heart expressed predominantly the longer KCC2a splice variant consistent with the larger ~145-kDa protein in chicken heart. Immunofluorescence microscopy revealed prominent plasma membrane KCC2 labeling in chicken ventricular cardiomyocytes. We hypothesize that KCC2 is an important Cl(-) extrusion pathway in avian cardiomyocytes that counters channel-mediated Cl(-) loading during high heart rates with ß-adrenergic stimulation. While KCC2 is absent from mammalian cardiomyocytes, understanding the role that the other KCC isoforms play in Cl(-) homeostasis of these cells represents a nascent area of research.


Assuntos
Encéfalo/metabolismo , Galinhas/metabolismo , Miocárdio/metabolismo , Simportadores/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Células HEK293 , Humanos , Isoformas de Proteínas/biossíntese , Ratos , Simportadores/genética , Simportadores/imunologia , Cotransportadores de K e Cl-
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA