Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 192(3): 2492-2506, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36974904

RESUMO

The circadian oscillator allows organisms to synchronize their cellular and physiological activities with diurnal environmental changes. In plants, the circadian clock is primarily composed of multiple transcriptional-translational feedback loops. Regulators of post-transcriptional events, such as precursor messenger RNAs (pre-mRNA) splicing factors, are also involved in controlling the pace of the clock. However, in most cases the underlying mechanisms remain unclear. We have previously identified XAP5 CIRCADIAN TIMEKEEPER (XCT) as an Arabidopsis thaliana circadian clock regulator with uncharacterized molecular functions. Here, we report that XCT physically interacts with components of the spliceosome, including members of the Nineteen Complex (NTC). PacBio Iso-Seq data show that xct mutants have transcriptome-wide pre-mRNA splicing defects, predominantly aberrant 3' splice site selection. Expression of a genomic copy of XCT fully rescues those splicing defects, demonstrating that functional XCT is important for splicing. Dawn-expressed genes are significantly enriched among those aberrantly spliced in xct mutants, suggesting that the splicing activity of XCT may be circadian regulated. Furthermore, we show that loss-of-function mutations in PRP19A or PRP19B, 2 homologous core NTC components, suppress the short circadian period phenotype of xct-2. However, we do not see rescue of the splicing defects of core clock genes in prp19 xct mutants. Therefore, our results suggest that XCT may regulate splicing and the clock function through genetically separable pathways.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Relógios Circadianos/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Precursores de RNA/genética , Splicing de RNA/genética , Arabidopsis/metabolismo , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas
2.
Elife ; 112022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34984977

RESUMO

Eukaryotic genomes express numerous long intergenic non-coding RNAs (lincRNAs) that do not overlap any coding genes. Some lincRNAs function in various aspects of gene regulation, but it is not clear in general to what extent lincRNAs contribute to the information flow from genotype to phenotype. To explore this question, we systematically analysed cellular roles of lincRNAs in Schizosaccharomyces pombe. Using seamless CRISPR/Cas9-based genome editing, we deleted 141 lincRNA genes to broadly phenotype these mutants, together with 238 diverse coding-gene mutants for functional context. We applied high-throughput colony-based assays to determine mutant growth and viability in benign conditions and in response to 145 different nutrient, drug, and stress conditions. These analyses uncovered phenotypes for 47.5% of the lincRNAs and 96% of the protein-coding genes. For 110 lincRNA mutants, we also performed high-throughput microscopy and flow cytometry assays, linking 37% of these lincRNAs with cell-size and/or cell-cycle control. With all assays combined, we detected phenotypes for 84 (59.6%) of all lincRNA deletion mutants tested. For complementary functional inference, we analysed colony growth of strains ectopically overexpressing 113 lincRNA genes under 47 different conditions. Of these overexpression strains, 102 (90.3%) showed altered growth under certain conditions. Clustering analyses provided further functional clues and relationships for some of the lincRNAs. These rich phenomics datasets associate lincRNA mutants with hundreds of phenotypes, indicating that most of the lincRNAs analysed exert cellular functions in specific environmental or physiological contexts. This study provides groundwork to further dissect the roles of these lincRNAs in the relevant conditions.


Assuntos
RNA Fúngico/genética , RNA não Traduzido/genética , Schizosaccharomyces/genética , RNA Fúngico/metabolismo , RNA não Traduzido/metabolismo , Schizosaccharomyces/metabolismo
4.
Plant Cell ; 33(6): 1863-1887, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-33751107

RESUMO

Plants recognize surrounding microbes by sensing microbe-associated molecular patterns (MAMPs) to activate pattern-triggered immunity (PTI). Despite their significance for microbial control, the evolution of PTI responses remains largely uncharacterized. Here, by employing comparative transcriptomics of six Arabidopsis thaliana accessions and three additional Brassicaceae species to investigate PTI responses, we identified a set of genes that commonly respond to the MAMP flg22 and genes that exhibit species-specific expression signatures. Variation in flg22-triggered transcriptome responses across Brassicaceae species was incongruent with their phylogeny, while expression changes were strongly conserved within A. thaliana. We found the enrichment of WRKY transcription factor binding sites in the 5'-regulatory regions of conserved and species-specific responsive genes, linking the emergence of WRKY-binding sites with the evolution of gene expression patterns during PTI. Our findings advance our understanding of the evolution of the transcriptome during biotic stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassicaceae , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Brassicaceae/genética , Brassicaceae/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Imunidade Vegetal/genética
5.
Proc Natl Acad Sci U S A ; 114(28): 7456-7461, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28652328

RESUMO

Phytopathogens promote virulence by, for example, exploiting signaling pathways mediated by phytohormones such as abscisic acid (ABA) and jasmonate (JA). Some plants can counteract pathogen virulence by invoking a potent form of immunity called effector-triggered immunity (ETI). Here, we report that ABA and JA mediate inactivation of the immune-associated MAP kinases (MAPKs), MPK3 and MPK6, in Arabidopsis thaliana ABA induced expression of genes encoding the protein phosphatases 2C (PP2Cs), HAI1, HAI2, and HAI3 through ABF/AREB transcription factors. These three HAI PP2Cs interacted with MPK3 and MPK6 and were required for ABA-mediated MPK3/MPK6 inactivation and immune suppression. The bacterial pathogen Pseudomonas syringae pv. tomato (Pto) DC3000 activates ABA signaling and produces a JA-mimicking phytotoxin, coronatine (COR), that promotes virulence. We found that Pto DC3000 induces HAI1 through COR-mediated activation of MYC2, a master transcription factor in JA signaling. HAI1 dephosphorylated MPK3 and MPK6 in vitro and was necessary for COR-mediated suppression of MPK3/MPK6 activation and immunity. Intriguingly, upon ETI activation, A. thaliana plants overcame the HAI1-dependent virulence of COR by blocking JA signaling. Finally, we showed conservation of induction of HAI PP2Cs by ABA and JA in other Brassicaceae species. Taken together, these results suggest that ABA and JA signaling pathways, which are hijacked by the bacterial pathogen, converge on the HAI PP2Cs that suppress activation of the immune-associated MAPKs. Also, our data unveil interception of JA-signaling activation as a host counterstrategy against the bacterial suppression of MAPKs during ETI.


Assuntos
Ácido Abscísico/química , Arabidopsis/imunologia , Arabidopsis/microbiologia , Ciclopentanos/química , Sistema de Sinalização das MAP Quinases , Oxilipinas/química , Aminoácidos/química , Arabidopsis/enzimologia , Proteínas de Arabidopsis/metabolismo , Fosfatase 1 de Especificidade Dupla/metabolismo , Ativação Enzimática , Regulação da Expressão Gênica de Plantas , Indenos/química , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/química , Imunidade Vegetal , Proteína Fosfatase 2C/metabolismo , Pseudomonas syringae , Ácido Salicílico/metabolismo , Transdução de Sinais , Virulência
6.
EMBO Rep ; 18(3): 464-476, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28069610

RESUMO

Immune signaling networks must be tunable to alleviate fitness costs associated with immunity and, at the same time, robust against pathogen interferences. How these properties mechanistically emerge in plant immune signaling networks is poorly understood. Here, we discovered a molecular mechanism by which the model plant species Arabidopsis thaliana achieves robust and tunable immunity triggered by the microbe-associated molecular pattern, flg22. Salicylic acid (SA) is a major plant immune signal molecule. Another signal molecule jasmonate (JA) induced expression of a gene essential for SA accumulation, EDS5 Paradoxically, JA inhibited expression of PAD4, a positive regulator of EDS5 expression. This incoherent type-4 feed-forward loop (I4-FFL) enabled JA to mitigate SA accumulation in the intact network but to support it under perturbation of PAD4, thereby minimizing the negative impact of SA on fitness as well as conferring robust SA-mediated immunity. We also present evidence for evolutionary conservation of these gene regulations in the family Brassicaceae Our results highlight an I4-FFL that simultaneously provides the immune network with robustness and tunability in A. thaliana and possibly in its relatives.


Assuntos
Regulação da Expressão Gênica de Plantas , Imunidade/genética , Fenômenos Fisiológicos Vegetais , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/fisiologia , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
7.
EMBO Rep ; 15(8): 894-902, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24957674

RESUMO

Chromatin regulatory proteins affect diverse developmental and environmental response pathways via their influence on nuclear processes such as the regulation of gene expression. Through a genome-wide genetic screen, we implicate a novel protein called X-chromosome-associated protein 5 (Xap5) in chromatin regulation. We show that Xap5 is a chromatin-associated protein acting in a similar manner as the histone variant H2A.Z to suppress expression of antisense and repeat element transcripts throughout the fission yeast genome. Xap5 is highly conserved across eukaryotes, and a plant homolog rescues xap5 mutant yeast. We propose that Xap5 likely functions as a chromatin regulator in diverse organisms.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Histonas/fisiologia , Proteínas de Schizosaccharomyces pombe/fisiologia , Schizosaccharomyces/genética , Elementos Antissenso (Genética) , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Genes Fúngicos , Teste de Complementação Genética , Ligação Proteica , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Sequências Repetitivas de Ácido Nucleico , Schizosaccharomyces/metabolismo , Transcrição Gênica , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA