Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ArXiv ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38979489

RESUMO

Real-time monitoring of dynamic biological processes in the body is critical to understanding disease progression and treatment response. This data, for instance, can help address the lower than 50% response rates to cancer immunotherapy. However, current clinical imaging modalities lack the molecular contrast, resolution, and chronic usability for rapid and accurate response assessments. Here, we present a fully wireless image sensor featuring a 2.5×5 mm2 CMOS integrated circuit for multicolor fluorescence imaging deep in tissue. The sensor operates wirelessly via ultrasound (US) at 5 cm depth in oil, harvesting energy with 221 mW/cm2 incident US power density (31% of FDA limits) and backscattering data at 13 kbps with a bit error rate <10-6. In-situ fluorescence excitation is provided by micro-laser diodes controlled with a programmable on-chip driver. An optical frontend combining a multi-bandpass interference filter and a fiber optic plate provides >6 OD excitation blocking and enables three-color imaging for detecting multiple cell types. A 36×40-pixel array captures images with <125 µm resolution. We demonstrate wireless, dual-color fluorescence imaging of both effector and suppressor immune cells in ex vivo mouse tumor samples with and without immunotherapy. These results show promise for providing rapid insight into therapeutic response and resistance, guiding personalized medicine.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38457321

RESUMO

We present a mm-sized, ultrasonically powered lensless CMOS image sensor as a progress towards wireless fluorescence microscopy. Access to biological information within the tissue has the potential to provide insights guiding diagnosis and treatment across numerous medical conditions including cancer therapy. This information, in conjunction with current clinical imaging techniques that have limitations in obtaining images continuously and lack wireless compatibility, can improve continual detection of multicell clusters deep within tissue. The proposed platform incorporates a 2.4×4.7 mm2 integrated circuit (IC) fabricated in TSMC 0.18 µm, a micro laser diode (µLD), a single piezoceramic and off-chip storage capacitors. The IC consists of a 36×40 array of capacitive trans-impedance amplifier-based pixels, wireless power management and communication via ultrasound and a laser driver all controlled by a Finite State Machine. The piezoceramic harvests energy from the acoustic waves at a depth of 2 cm to power up the IC and transfer 11.5 kbits/frame via backscattering. During Charge-Up, the off-chip capacitor stores charge to later supply a high-power 78 mW µLD during Imaging. Proof of concept of the imaging front end is shown by imaging distributions of CD8 T-cells, an indicator of the immune response to cancer, ex vivo, in the lymph nodes of a functional immune system (BL6 mice) against colorectal cancer consistent with the results of a fluorescence microscope. The overall system performance is verified by detecting 140 µm features on a USAF resolution target with 32 ms exposure time and 389 ms ultrasound backscattering.

3.
Biomed Opt Express ; 15(3): 1761-1776, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38495694

RESUMO

In curative-intent cancer surgery, intraoperative fluorescence imaging of both diseased and healthy tissue can help to ensure the successful removal of all gross and microscopic diseases with minimal damage to neighboring critical structures, such as nerves. Current fluorescence-guided surgery (FGS) systems, however, rely on bulky and rigid optics that incur performance-limiting trade-offs between sensitivity and maneuverability. Moreover, many FGS systems are incapable of multiplexed imaging. As a result, clinical FGS is currently limited to millimeter-scale detection of a single fluorescent target. Here, we present a scalable, lens-less fluorescence imaging chip, VISION, capable of sensitive and multiplexed detection within a compact form factor. Central to VISION is a novel optical frontend design combining a low-numerical-aperture fiber optic plate (LNA-FOP) and a multi-bandpass interference filter, which is affixed to a custom CMOS image sensor. The LNA-FOP acts as a planar collimator to improve resolution and compensate for the angle-sensitivity of the interference filter, enabling high-resolution and multiplexed fluorescence imaging without lenses. We show VISION is capable of detecting tumor foci of less than 100 cells at near video framerates and, as proof of principle, can simultaneously visualize both tumors and nerves in ex vivo prostate tissue.

4.
Int J Radiat Oncol Biol Phys ; 118(5): 1575-1584, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38122990

RESUMO

PURPOSE: Targeted radionuclide therapy (TRT), whereby a tumor-targeted molecule is linked to a therapeutic beta- or alpha-emitting radioactive nuclide, is a promising treatment modality for patients with metastatic cancer, delivering radiation systemically. However, patients still progress due to suboptimal dosing, driven by the large patient-to-patient variability. Therefore, the ability to continuously monitor the real-time dose deposition in tumors and organs at risk provides an additional dimension of information during clinical trials that can enable insights into better strategies to personalize TRT. METHODS AND MATERIALS: Here, we present a single beta-particle sensitive dosimeter consisting of a 0.27-mm3 monolithic silicon chiplet directly implanted into the tumor. To maximize the sensitivity and have enough detection area, minimum-size diodes (1 µm2) are arrayed in 64 × 64. Signal amplifiers, buffers, and on-chip memories are all integrated in the chip. For verification, PC3-PIP (prostate-specific membrane antigen [PSMA]+) and PC3-flu (PSMA-) cell lines are injected into the left and right flanks of the mice, respectively. The devices are inserted into each tumor and measure activities at 5 different time points (0-2 hours, 7-9 hours, 12-14 hours, 24-26 hours, and 48-50 hours) after 177Lu-PSMA-617 injections. Single-photon emission computed tomography/computed tomography scans are used to verify measured data. RESULTS: With a wide detection range from 0.013 to 8.95 MBq/mL, the system is capable of detecting high tumor uptake as well as low doses delivered to organs at risk in real time. The measurement data are highly proportional (R2 > 0.99) to the 177Lu-PSMA-617 activity. The in vivo measurement data agree well with the single-photon emission computed tomography/computed tomography results within acceptable errors (±1.5%ID/mL). CONCLUSIONS: Given the recent advances in clinical use of TRT in prostate cancer, the proposed system is verified in a prostate cancer mouse model using 177Lu-PSMA-617.


Assuntos
Neoplasias da Próstata , Radioisótopos , Masculino , Humanos , Animais , Camundongos , Radioisótopos/uso terapêutico , Neoplasias da Próstata/patologia , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/métodos , Compostos Radiofarmacêuticos/uso terapêutico , Lutécio/uso terapêutico , Antígeno Prostático Específico
5.
Biosens Bioelectron ; 247: 115956, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38145595

RESUMO

Cancer radiopharmaceutical therapies (RPTs) have demonstrated great promise in the treatment of neuroendocrine and prostate cancer, giving hope to late-stage metastatic cancer patients with currently very few treatment options. These therapies have sparked a large amount of interest in pre-clinical research due to their ability to target metastatic disease, with many research efforts focused towards developing and evaluating targeted RPTs for different cancer types in in vivo models. Here we describe a method for monitoring real-time in vivo binding kinetics for the pre-clinical evaluation of cancer RPTs. Recognizing the significant heterogeneity in biodistribution of RPTs among even genetically identical animal models, this approach offers long-term monitoring of the same in vivo organism without euthanasia in contrast to ex vivo tissue dosimetry, while providing high temporal resolution with a low-cost, easily assembled platform, that is not present in small-animal SPECT/CTs. The method utilizes the developed optical fiber-based γ-photon biosensor, characterized to have a wide linear dynamic range with Lutetium-177 (177Lu) activity (0.5-500 µCi/mL), a common radioisotope used in cancer RPT. The probe's ability to track in vivo uptake relative to SPECT/CT and ex vivo dosimetry techniques was verified by administering 177Lu-PSMA-617 to mouse models bearing human prostate cancer tumors (PC3-PIP, PC3-flu). With this method for monitoring RPT uptake, it is possible to evaluate changes in tissue uptake at temporal resolutions <1 min to determine RPT biodistribution in pre-clinical models and better understand dose relationships with tumor ablation, toxicity, and recurrence when attempting to move therapies towards clinical trial validation.


Assuntos
Técnicas Biossensoriais , Neoplasias da Próstata , Masculino , Animais , Camundongos , Humanos , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/metabolismo , Compostos Radiofarmacêuticos/uso terapêutico , Glutamato Carboxipeptidase II , Distribuição Tecidual , Fibras Ópticas , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Antígeno Prostático Específico , Lutécio/química
6.
bioRxiv ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38106190

RESUMO

We present a mm-sized, ultrasonically powered lensless CMOS image sensor as a progress towards wireless fluorescence microscopy. Access to biological information within the tissue has the potential to provide insights guiding diagnosis and treatment across numerous medical conditions including cancer therapy. This information, in conjunction with current clinical imaging techniques that have limitations in obtaining images continuously and lack wireless compatibility, can improve continual detection of multicell clusters deep within tissue. The proposed platform incorporates a 2.4×4.7 mm2 integrated circuit (IC) fabricated in TSMC 0.18 µm, a micro laser diode (µLD), a single piezoceramic and off-chip storage capacitors. The IC consists of a 36×40 array of capacitive trans-impedance amplifier-based pixels, wireless power management and communication via ultrasound and a laser driver all controlled by a Finite State Machine. The piezoceramic harvests energy from the acoustic waves at a depth of 2 cm to power up the IC and transfer 11.5 kbits/frame via backscattering. During Charge-Up, the off-chip capacitor stores charge to later supply a high-power 78 mW µLD during Imaging. Proof of concept of the imaging front end is shown by imaging distributions of CD8 T-cells, an indicator of the immune response to cancer, ex vivo, in the lymph nodes of a functional immune system (BL6 mice) against colorectal cancer consistent with the results of a fluorescence microscope. The overall system performance is verified by detecting 140 µm features on a USAF resolution target with 32 ms exposure time and 389 ms ultrasound backscattering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA