Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
IUCrJ ; 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39072705

RESUMO

The antipsychotic drug olanzapine is well known for its complex polymorphism. Although widely investigated, the crystal structure of one of its anhydrous polymorphs, form III, is still unknown. Its appearance, always in concomitance with forms II and I, and the impossibility of isolating it from that mixture, have prevented its structure determination so far. The scenario has changed with the emerging field of 3D electron diffraction (3D ED) and its great advantages in the characterization of polyphasic mixtures of nanosized crystals. In this study, we show how the application of 3D ED allows the ab initio structure determination and dynamical refinement of this elusive crystal structure that remained unknown for more than 20 years. Olanzapine form III is monoclinic and shows a similar but shifted packing with respect to form II. It is remarkably different from the lowest-energy structures predicted by the energy-minimization algorithms of crystal structure prediction.

2.
Front Chem ; 9: 623595, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996740

RESUMO

Hexamethylenetetramine (HMTA) and N-haloimides form two types of short (imide)X···N and X-X···N (X = Br, I) halogen bonds. Nucleophilic substitution or ligand-exchange reaction on the peripheral X of X-X···N with the chloride of N-chlorosuccinimide lead to Cl-X···N halogen-bonded complexes. The 1:1 complexation of HMTA and ICl manifests the shortest I···N halogen bond [2.272(5) Å] yet reported for an HMTA acceptor. Two halogen-bonded organic frameworks are prepared using 1:4 molar ratio of HMTA and N-bromosuccinimide, each with a distinct channel shape, one possessing oval and the other square grid. The variations in channel shapes are due to tridentate and tetradentate (imide)Br···N coordination modes of HMTA. Density Functional Theory (DFT) studies are performed to gain insights into (imide)X···N interaction strengths (ΔEint). The calculated ΔEint values for (imide)Br···N (-11.2 to -12.5 kcal/mol) are smaller than the values for (imide)I···N (-8.4 to -29.0 kcal/mol). The DFT additivity analysis of (imide)Br···N motifs demonstrates Br···N interaction strength gradually decreasing from 1:1 to 1:3 HMTA:N-bromosuccinimide complexes. Exceptionally similar charge density values ρ(r) for N-I covalent bond and I···N non-covalent bond of a (saccharin)N-I···N motif signify the covalent character for I···N halogen bonding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA