Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 17(10): e0011657, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37796973

RESUMO

Since emerging in French Polynesia and Brazil in the 2010s, Zika virus (ZIKV) has been associated with fetal congenital disease. Previous studies have compared ancestral and epidemic ZIKV strains to identify strain differences that may contribute to vertical transmission and fetal disease. However, within-host diversity in ZIKV populations during vertical transmission has not been well studied. Here, we used the established anti-interferon treated Rag1-/- mouse model of ZIKV vertical transmission to compare genomic variation within ZIKV populations in matched placentas, fetal bodies, and fetal brains via RNASeq. At early stages of vertical transmission, the ZIKV populations in the matched placentas and fetal bodies were similar. Most ZIKV single nucleotide variants were present in both tissues, indicating little to no restriction in transmission of ZIKV variants from placenta to fetus. In contrast, at later stages of fetal infection there was a sharp reduction in ZIKV diversity in fetal bodies and fetal brains. All fetal brain ZIKV populations were comprised of one of two haplotypes, containing either a single variant or three variants together, as largely homogenous populations. In most cases, the dominant haplotype present in the fetal brain was also the dominant haplotype present in the matched fetal body. However, in two of ten fetal brains the dominant ZIKV haplotype was undetectable or present at low frequencies in the matched placenta and fetal body ZIKV populations, suggesting evidence of a strict selective bottleneck and possible selection for certain variants during neuroinvasion of ZIKV into fetal brains.


Assuntos
Doenças Fetais , Complicações Infecciosas na Gravidez , Infecção por Zika virus , Zika virus , Gravidez , Humanos , Feminino , Animais , Camundongos , Zika virus/genética , Placenta , Transmissão Vertical de Doenças Infecciosas , Feto , Encéfalo
2.
Nat Commun ; 14(1): 4481, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491352

RESUMO

Inflammation in response to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection drives severity of coronavirus disease 2019 (COVID-19) and is influenced by host genetics. To understand mechanisms of inflammation, animal models that reflect genetic diversity and clinical outcomes observed in humans are needed. We report a mouse panel comprising the genetically diverse Collaborative Cross (CC) founder strains crossed to human ACE2 transgenic mice (K18-hACE2) that confers susceptibility to SARS-CoV-2. Infection of CC x K18-hACE2 resulted in a spectrum of survival, viral replication kinetics, and immune profiles. Importantly, in contrast to the K18-hACE2 model, early type I interferon (IFN-I) and regulated proinflammatory responses were required for control of SARS-CoV-2 replication in PWK x K18-hACE2 mice that were highly resistant to disease. Thus, virus dynamics and inflammation observed in COVID-19 can be modeled in diverse mouse strains that provide a genetically tractable platform for understanding anti-coronavirus immunity.


Assuntos
COVID-19 , Interferon Tipo I , Humanos , Camundongos , Animais , Citocinas , SARS-CoV-2 , Camundongos Transgênicos , Inflamação/genética , Modelos Animais de Doenças , Pulmão
3.
Nat Commun ; 14(1): 2836, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37202395

RESUMO

One of the key events in viral encephalitis is the ability of virus to enter the central nervous system (CNS). Several encephalitic viruses, including La Crosse Virus (LACV), primarily induce encephalitis in children, but not adults. This phenomenon is also observed in LACV mouse models, where the virus gains access to the CNS of weanling animals through vascular leakage of brain microvessels, likely through brain capillary endothelial cells (BCECs). To examine age and region-specific regulatory factors of vascular leakage, we used genome-wide transcriptomics and targeted siRNA screening to identify genes whose suppression affected viral pathogenesis in BCECs. Further analysis of two of these gene products, Connexin43 (Cx43/Gja1) and EphrinA2 (Efna2), showed a substantial effect on LACV pathogenesis. Induction of Cx43 by 4-phenylbutyric acid (4-PBA) inhibited neurological disease in weanling mice, while Efna2 deficiency increased disease in adult mice. Thus, we show that Efna2 and Cx43 expressed by BCECs are key mediators of LACV-induced neuroinvasion and neurological disease.


Assuntos
Encefalite da Califórnia , Vírus La Crosse , Animais , Camundongos , Vírus La Crosse/genética , Encefalite da Califórnia/genética , Conexina 43 , Células Endoteliais , Fatores Etários
4.
Infect Immun ; 91(7): e0009623, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37255490

RESUMO

All members of the family Chlamydiaceae have lipopolysaccharides (LPS) that possess a shared carbohydrate trisaccharide antigen, 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) that is functionally uncharacterized. A single gene, genus-specific epitope (gseA), is responsible for attaching the tri-Kdo to lipid IVA. To investigate the function of Kdo in chlamydial host cell interactions, we made a gseA-null strain (L2ΔgseA) by using TargeTron mutagenesis. Immunofluorescence microscopy and immunoblotting with a Kdo-specific monoclonal antibody demonstrated that L2ΔgseA lacked Kdo. L2ΔgseA reacted by immunoblotting with a monoclonal antibody specific for a conserved LPS glucosamine-PO4 epitope, indicating that core lipid A was retained by the mutant. The mutant strain produced a similar number of inclusions as the parental strain but yielded lower numbers of infectious elementary bodies. Transmission electron microscopy of L2ΔgseA-infected cells showed atypical developmental forms and a reduction in the number of elementary bodies. Immunoblotting of dithiothreitol-treated L2ΔgseA-infected cells lysates revealed a marked reduction in outer membrane OmcB disulfide cross-linking, suggesting that the elementary body outer membrane structure was affected by the lack of Kdo. Notably, lactic acid dehydrogenase release by infected cells demonstrated that L2ΔgseA was significantly more cytotoxic to host cells than the wild type. The cytotoxic phenotype may result from an altered outer membrane biogenesis structure and/or function or, conversely, from a direct pathobiological effect of Kdo on an unknown host cell target. These findings implicate a previously unrecognized role for Kdo in host cell interactions that facilitates postinfection host cell survival.


Assuntos
Chlamydia trachomatis , Lipopolissacarídeos , Lipopolissacarídeos/metabolismo , Sequência de Carboidratos , Epitopos , Açúcares Ácidos , Anticorpos Monoclonais
5.
bioRxiv ; 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35233576

RESUMO

Inflammation in response to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection drives severity of coronavirus disease 2019 (COVID-19) and is influenced by host genetics. To understand mechanisms of inflammation, animal models that reflect genetic diversity and clinical outcomes observed in humans are needed. We report a mouse panel comprising the genetically diverse Collaborative Cross (CC) founder strains crossed to human ACE2 transgenic mice (K18-hACE2) that confers susceptibility to SARS-CoV-2. Infection of CC x K18- hACE2 resulted in a spectrum of survival, viral replication kinetics, and immune profiles. Importantly, in contrast to the K18-hACE2 model, early type I interferon (IFN-I) and regulated proinflammatory responses were required for control of SARS-CoV-2 replication in PWK x K18-hACE2 mice that were highly resistant to disease. Thus, virus dynamics and inflammation observed in COVID-19 can be modeled in diverse mouse strains that provide a genetically tractable platform for understanding anti-coronavirus immunity.

6.
J Clin Invest ; 132(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36377664

RESUMO

Subcutaneous phaeohyphomycosis typically affects immunocompetent individuals following traumatic inoculation. Severe or disseminated infection can occur in CARD9 deficiency or after transplantation, but the mechanisms protecting against phaeohyphomycosis remain unclear. We evaluated a patient with progressive, refractory Corynespora cassiicola phaeohyphomycosis and found that he carried biallelic deleterious mutations in CLEC7A encoding the CARD9-coupled, ß-glucan-binding receptor, Dectin-1. The patient's PBMCs failed to produce TNF-α and IL-1ß in response to ß-glucan and/or C. cassiicola. To confirm the cellular and molecular requirements for immunity against C. cassiicola, we developed a mouse model of this infection. Mouse macrophages required Dectin-1 and CARD9 for IL-1ß and TNF-α production, which enhanced fungal killing in an interdependent manner. Deficiency of either Dectin-1 or CARD9 was associated with more severe fungal disease, recapitulating the human observation. Because these data implicated impaired Dectin-1 responses in susceptibility to phaeohyphomycosis, we evaluated 17 additional unrelated patients with severe forms of the infection. We found that 12 out of 17 carried deleterious CLEC7A mutations associated with an altered Dectin-1 extracellular C-terminal domain and impaired Dectin-1-dependent cytokine production. Thus, we show that Dectin-1 and CARD9 promote protective TNF-α- and IL-1ß-mediated macrophage defense against C. cassiicola. More broadly, we demonstrate that human Dectin-1 deficiency may contribute to susceptibility to severe phaeohyphomycosis by certain dematiaceous fungi.


Assuntos
Feoifomicose , beta-Glucanas , Animais , Humanos , Masculino , Camundongos , Proteínas Adaptadoras de Sinalização CARD/genética , Lectinas Tipo C/genética , Macrófagos/metabolismo , Feoifomicose/microbiologia , Fator de Necrose Tumoral alfa/genética
7.
Sci Immunol ; 7(71): eabn1250, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35559666

RESUMO

Several infectious and autoimmune diseases are associated with an expansion of CD21-CD27- atypical B cells (atBCs) that up-regulate inhibitory receptors and exhibit altered B cell receptor (BCR) signaling. The function of atBCs remains unclear, and few studies have investigated the biology of pathogen-specific atBCs during acute infection. Here, we performed longitudinal flow cytometry analyses and RNA sequencing of Plasmodium falciparum (Pf)-specific B cells isolated from study participants before and shortly after febrile malaria, with simultaneous analysis of influenza hemagglutinin (HA)-specific B cells as a comparator. At the healthy baseline before the malaria season, individuals had similar frequencies of Pf- and HA-specific atBCs that did not differ proportionally from atBCs within the total B cell population. BCR sequencing identified clonal relationships between Pf-specific atBCs, activated B cells (actBCs), and classical memory B cells (MBCs) and revealed comparable degrees of somatic hypermutation. At the healthy baseline, Pf-specific atBCs were transcriptionally distinct from Pf-specific actBCs and classical MBCs. In response to acute febrile malaria, Pf-specific atBCs and actBCs up-regulated similar intracellular signaling cascades. Pf-specific atBCs showed activation of pathways involved in differentiation into antibody-secreting cells and up-regulation of molecules that mediate B-T cell interactions, suggesting that atBCs respond to T follicular helper (TFH) cells. In the presence of TFH cells and staphylococcal enterotoxin B, atBCs of malaria-exposed individuals differentiated into CD38+ antibody-secreting cells in vitro, suggesting that atBCs may actively contribute to humoral immunity to infectious pathogens.


Assuntos
Influenza Humana , Malária , Humanos , Imunoglobulina M , Memória Imunológica , Plasmodium falciparum , Células T Auxiliares Foliculares
8.
Front Immunol ; 12: 752782, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938286

RESUMO

Low nadir CD4 T-cell counts in HIV+ patients are associated with high morbidity and mortality and lasting immune dysfunction, even after antiretroviral therapy (ART). The early events of immune recovery of T cells and B cells in severely lymphopenic HIV+ patients have not been fully characterized. In a cohort of lymphopenic (CD4 T-cell count < 100/µL) HIV+ patients, we studied mononuclear cells isolated from peripheral blood (PB) and lymph nodes (LN) pre-ART (n = 40) and 6-8 weeks post-ART (n = 30) with evaluation of cellular immunophenotypes; histology on LN sections; functionality of circulating T follicular helper (cTfh) cells; transcriptional and B-cell receptor profile on unfractionated LN and PB samples; and plasma biomarker measurements. A group of 19 healthy controls (HC, n = 19) was used as a comparator. T-cell and B-cell lymphopenia was present in PB pre-ART in HIV+ patients. CD4:CD8 and CD4 T- and B-cell PB subsets partly normalized compared to HC post-ART as viral load decreased. Strikingly in LN, ART led to a rapid decrease in interferon signaling pathways and an increase in Tfh, germinal center and IgD-CD27- B cells, consistent with histological findings of post-ART follicular hyperplasia. However, there was evidence of cTfh cells with decreased helper capacity and of limited B-cell receptor diversification post-ART. In conclusion, we found early signs of immune reconstitution, evidenced by a surge in LN germinal center cells, albeit limited in functionality, in HIV+ patients who initiate ART late in disease.


Assuntos
Síndrome da Imunodeficiência Adquirida/tratamento farmacológico , Fármacos Anti-HIV/uso terapêutico , Linfócitos B/imunologia , Centro Germinativo/imunologia , Subpopulações de Linfócitos/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Viremia/tratamento farmacológico , Síndrome da Imunodeficiência Adquirida/sangue , Síndrome da Imunodeficiência Adquirida/imunologia , Adulto , Fármacos Anti-HIV/farmacologia , Anticorpos Antivirais/sangue , Técnicas de Cocultura , Feminino , Centro Germinativo/patologia , Hemoglobinas/análise , Humanos , Hiperplasia , Linfonodos/imunologia , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Receptores de Antígenos de Linfócitos B/genética , Transcrição Gênica , Carga Viral , Viremia/imunologia , Adulto Jovem
9.
Sci Adv ; 7(43): eabj3627, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34678071

RESUMO

The emergence of several SARS-CoV-2 variants has caused global concerns about increased transmissibility, increased pathogenicity, and decreased efficacy of medical countermeasures. Animal models can be used to assess phenotypical changes in the absence of confounding factors. Here, we compared variants of concern (VOC) B.1.1.7 and B.1.351 to a recent B.1 SARS-CoV-2 isolate containing the D614G spike substitution in the rhesus macaque model. B.1.1.7 behaved similarly to D614G with respect to clinical disease and replication in the respiratory tract. Inoculation with B.1.351 resulted in lower clinical scores, lower lung virus titers, and less severe lung lesions. In bronchoalveolar lavages, cytokines and chemokines were up-regulated on day 4 in animals inoculated with D614G and B.1.1.7 but not with B.1.351. In nasal samples, cytokines and chemokines were up-regulated only in the B.1.1.7-inoculated animals. Together, our study suggests that circulation under diverse evolutionary pressures favors transmissibility and immune evasion rather than increased pathogenicity.

10.
Nat Commun ; 12(1): 5868, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620866

RESUMO

We investigated ChAdOx1 nCoV-19 (AZD1222) vaccine efficacy against SARS-CoV-2 variants of concern (VOCs) B.1.1.7 and B.1.351 in Syrian hamsters. We previously showed protection against SARS-CoV-2 disease and pneumonia in hamsters vaccinated with a single dose of ChAdOx1 nCoV-19. Here, we observe a 9.5-fold reduction of virus neutralizing antibody titer in vaccinated hamster sera against B.1.351 compared to B.1.1.7. Vaccinated hamsters challenged with B.1.1.7 or B.1.351 do not lose weight compared to control animals. In contrast to control animals, the lungs of vaccinated animals do not show any gross lesions. Minimal to no viral subgenomic RNA (sgRNA) and no infectious virus can be detected in lungs of vaccinated animals. Histopathological evaluation shows extensive pulmonary pathology caused by B.1.1.7 or B.1.351 replication in the control animals, but none in the vaccinated animals. These data demonstrate the effectiveness of the ChAdOx1 nCoV-19 vaccine against clinical disease caused by B.1.1.7 or B.1.351 VOCs.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Administração Intranasal , Substituição de Aminoácidos , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/virologia , ChAdOx1 nCoV-19 , Feminino , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Mesocricetus , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação
11.
bioRxiv ; 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34382034

RESUMO

The emergence of several SARS-CoV-2 variants has caused global concerns about increased transmissibility, increased pathogenicity, and decreased efficacy of medical countermeasures. Animal models can be used to assess phenotypical changes in the absence of confounding factors that affect observed pathogenicity and transmissibility data in the human population. Here, we studied the pathogenicity of variants of concern (VOC) B.1.1.7 and B.1.351 in rhesus macaques and compared it to a recent clade B.1 SARS-CoV-2 isolate containing the D614G substitution in the spike protein. The B.1.1.7 VOC behaved similarly to the D614G with respect to clinical disease, virus shedding and virus replication in the respiratory tract. Inoculation with the B.1.351 isolate resulted in lower clinical scores in rhesus macaques that correlated with lower virus titers in the lungs, less severe histologic lung lesions and less viral antigen detected in the lungs. We observed differences in the local innate immune response to infection. In bronchoalveolar lavages, cytokines and chemokines were upregulated on day 4 in animals inoculated with D614G and B.1.1.7 but not in those inoculated with B.1.351. In nasal samples, we did not detect upregulation of cytokines and chemokines in D614G or B.1.351-inoculated animals. However, cytokines and chemokines were upregulated in the noses of B.1.1.7-inoculated animals. Taken together, our comparative pathogenicity study suggests that ongoing circulation under diverse evolutionary pressure favors transmissibility and immune evasion rather than an increase in intrinsic pathogenicity.

12.
Sci Transl Med ; 13(607)2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34315826

RESUMO

ChAdOx1 nCoV-19/AZD1222 is an approved adenovirus-based vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) currently being deployed globally. Previous studies in rhesus macaques revealed that intramuscular vaccination with ChAdOx1 nCoV-19/AZD1222 provided protection against pneumonia but did not reduce shedding of SARS-CoV-2 from the upper respiratory tract. Here, we investigated whether intranasally administered ChAdOx1 nCoV-19 reduces detection of virus in nasal swabs after challenging vaccinated macaques and hamsters with SARS-CoV-2 carrying a D614G mutation in the spike protein. Viral loads in swabs obtained from intranasally vaccinated hamsters were decreased compared to control hamsters, and no viral RNA or infectious virus was found in lung tissue after a direct challenge or after direct contact with infected hamsters. Intranasal vaccination of rhesus macaques resulted in reduced virus concentrations in nasal swabs and a reduction in viral loads in bronchoalveolar lavage and lower respiratory tract tissue. Intranasal vaccination with ChAdOx1 nCoV-19/AZD1222 reduced virus concentrations in nasal swabs in two different SARS-CoV-2 animal models, warranting further investigation as a potential vaccination route for COVID-19 vaccines.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Vacinas contra COVID-19 , ChAdOx1 nCoV-19 , Cricetinae , Macaca mulatta , Vacinação , Eliminação de Partículas Virais
13.
bioRxiv ; 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-33758847

RESUMO

We investigated ChAdOx1 nCoV-19 (AZD1222) vaccine efficacy against SARS-CoV-2 variants of concern (VOCs) B.1.1.7 and B.1.351 in Syrian hamsters. We previously showed protection against SARS-CoV-2 disease and pneumonia in hamsters vaccinated with a single dose of ChAdOx1 nCoV-19. Here, we observed a 9.5-fold reduction of virus neutralizing antibody titer in vaccinated hamster sera against B.1.351 compared to B.1.1.7. Vaccinated hamsters challenged with B.1.1.7 or B.1.351 did not lose weight compared to control animals. In contrast to control animals, the lungs of vaccinated animals did not show any gross lesions. Minimal to no viral subgenomic RNA (sgRNA) and no infectious virus was detected in lungs of vaccinated animals. Histopathological evaluation showed extensive pulmonary pathology caused by B.1.1.7 or B.1.351 replication in the control animals, but none in the vaccinated animals. These data demonstrate the effectiveness of the ChAdOx1 nCoV-19 vaccine against clinical disease caused by B.1.1.7 or B.1.351 VOCs.

14.
bioRxiv ; 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33447831

RESUMO

Intramuscular vaccination with ChAdOx1 nCoV-19/AZD1222 protected rhesus macaques against pneumonia but did not reduce shedding of SARS-CoV-2. Here we investigate whether intranasally administered ChAdOx1 nCoV-19 reduces shedding, using a SARS-CoV-2 virus with the D614G mutation in the spike protein. Viral load in swabs obtained from intranasally vaccinated hamsters was significantly decreased compared to controls and no viral RNA or infectious virus was found in lung tissue, both in a direct challenge and a transmission model. Intranasal vaccination of rhesus macaques resulted in reduced shedding and a reduction in viral load in bronchoalveolar lavage and lower respiratory tract tissue. In conclusion, intranasal vaccination reduced shedding in two different SARS-CoV-2 animal models, justifying further investigation as a potential vaccination route for COVID-19 vaccines.

15.
Cell ; 183(7): 1901-1912.e9, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33248470

RESUMO

Long-term severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) shedding was observed from the upper respiratory tract of a female immunocompromised individual with chronic lymphocytic leukemia and acquired hypogammaglobulinemia. Shedding of infectious SARS-CoV-2 was observed up to 70 days, and of genomic and subgenomic RNA up to 105 days, after initial diagnosis. The infection was not cleared after the first treatment with convalescent plasma, suggesting a limited effect on SARS-CoV-2 in the upper respiratory tract of this individual. Several weeks after a second convalescent plasma transfusion, SARS-CoV-2 RNA was no longer detected. We observed marked within-host genomic evolution of SARS-CoV-2 with continuous turnover of dominant viral variants. However, replication kinetics in Vero E6 cells and primary human alveolar epithelial tissues were not affected. Our data indicate that certain immunocompromised individuals may shed infectious virus longer than previously recognized. Detection of subgenomic RNA is recommended in persistently SARS-CoV-2-positive individuals as a proxy for shedding of infectious virus.


Assuntos
COVID-19/imunologia , Imunodeficiência de Variável Comum/imunologia , Leucemia Linfocítica Crônica de Células B/imunologia , SARS-CoV-2/isolamento & purificação , Idoso , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , COVID-19/complicações , COVID-19/virologia , Imunodeficiência de Variável Comum/sangue , Imunodeficiência de Variável Comum/complicações , Imunodeficiência de Variável Comum/virologia , Feminino , Humanos , Leucemia Linfocítica Crônica de Células B/sangue , Leucemia Linfocítica Crônica de Células B/complicações , Leucemia Linfocítica Crônica de Células B/virologia , Infecções Respiratórias/sangue , Infecções Respiratórias/complicações , Infecções Respiratórias/imunologia , Infecções Respiratórias/virologia , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade
16.
Pathogens ; 9(6)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560095

RESUMO

A Bacillus paranthracis isolate was cultured from the blood of a fatal Ebola virus disease (EVD) case in Liberia and was identified by whole genome sequencing. Although B. paranthracis has only recently been described and is poorly characterized, this case may represent the bacterial co-infection of an EVD patient.

18.
Sci Adv ; 6(6): eaaw6957, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32076635

RESUMO

The acquisition of malaria immunity is both remarkably slow and unpredictable. At present, we know little about the malaria parasite genes that influence the host's ability to mount a protective immune response. Here, we show that a single-nucleotide polymorphism (SNP) resulting in a single amino acid change (S to F) in an ApiAP2 transcription factor in the rodent malaria parasite Plasmodium berghei (Pb) NK65 allowed infected mice to mount a T helper cell 1 (TH1)-type immune response that controlled subsequent infections. As compared to PbNK65S, PbNK65F parasites differentially expressed 46 genes, most of which are predicted to play roles in immune evasion. PbNK65F infections resulted in an early interferon-γ response and a later expansion of germinal centers, resulting in high levels of infected red blood cell-specific TH1-type immunoglobulin G2b (IgG2b) and IgG2c antibodies. Thus, the Pb ApiAP2 transcription factor functions as a critical parasite virulence factor in malaria infections.


Assuntos
Culicidae/parasitologia , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/imunologia , Imunidade , Malária/parasitologia , Plasmodium berghei/genética , Polimorfismo de Nucleotídeo Único , Fator de Transcrição AP-2/genética , Imunidade Adaptativa , Animais , Proteínas de Ligação a DNA , Plasmodium berghei/metabolismo , Domínios e Motivos de Interação entre Proteínas , Células Th1/imunologia , Células Th1/metabolismo , Fator de Transcrição AP-2/química , Fator de Transcrição AP-2/metabolismo
19.
Methods Mol Biol ; 2087: 277-298, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31728999

RESUMO

Transcriptome analyses of unicellular and multicellular organisms have changed fundamental understanding of biological and pathological processes across multiple scientific disciplines. Over the past 15 years, studies of polymorphonuclear leukocyte (PMN or neutrophil) gene expression on a global scale have provided new insight into the molecular processes that promote resolution of infections in humans. Herein we present methods to analyze gene expression in human neutrophils using Affymetrix oligonucleotide microarrays and next-generation sequencing. Notably, the procedures utilize commercially available reagents and materials and thus represent a standardized approach for evaluating PMN transcript levels.


Assuntos
Perfilação da Expressão Gênica , Genômica , Neutrófilos/imunologia , Neutrófilos/metabolismo , Transcriptoma , Separação Celular/métodos , Citometria de Fluxo , Perfilação da Expressão Gênica/métodos , Biblioteca Gênica , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Fagocitose
20.
Artigo em Inglês | MEDLINE | ID: mdl-31836590

RESUMO

Thrombocytopenia-absent radii (TAR) syndrome, characterized by neonatal thrombocytopenia and bilateral radial aplasia with thumbs present, is typically caused by the inheritance of a 1q21.1 deletion and a single-nucelotide polymorphism in RBM8A on the nondeleted allele. We evaluated two siblings with TAR-like dysmorphology but lacking thrombocytopenia in infancy. Family NCI-107 participated in an IRB-approved cohort study and underwent comprehensive clinical and genomic evaluations, including aCGH, whole-exome, whole-genome, and targeted sequencing. Gene expression assays and electromobility shift assays (EMSAs) were performed to evaluate the variant of interest. The previously identified TAR-associated 1q21.1 deletion was present in the affected siblings and one healthy parent. Multiple sequencing approaches did not identify previously described TAR-associated SNPs or mutations in relevant genes. We discovered rs61746197 A > G heterozygosity in the parent without the deletion and apparent hemizygosity in both siblings. rs61746197 A > G overlaps a RelA-p65 binding motif, and EMSAs indicate the A allele has higher transcription factor binding efficiency than the G allele. Stimulation of K562 cells to induce megakaryocyte differentiation abrogated the shift of both reference and alternative probes. The 1q21.1 TAR-associated deletion in combination with the G variant of rs61746197 on the nondeleted allele is associated with a TAR-like phenotype. rs61746197 G could be a functional enhancer/repressor element, but more studies are required to identify the specific factor(s) responsible. Overall, our findings suggest a role of rs61746197 A > G and human disease in the setting of a 1q21.1 deletion on the other chromosome.


Assuntos
Anormalidades Múltiplas/genética , Síndrome Congênita de Insuficiência da Medula Óssea/genética , Megalencefalia/genética , Trombocitopenia/genética , Deformidades Congênitas das Extremidades Superiores/genética , Adolescente , Adulto , Alelos , Criança , Deleção Cromossômica , Cromossomos Humanos Par 1/genética , Família , Feminino , Heterozigoto , Humanos , Masculino , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Proteínas de Ligação a RNA/genética , Rádio (Anatomia) , Irmãos , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA