RESUMO
BACKGROUND: To investigate the immune responses and protection ability of ultraviolet light (UV)-inactivated recombinant vesicular stomatitis (rVSV)-based vectors that expressed a fusion protein consisting of four copies of the influenza matrix 2 protein ectodomain (tM2e) and the Dendritic Cell (DC)-targeting domain of the Ebola Glycoprotein (EΔM), (rVSV-EΔM-tM2e). METHOD: In our previous study, we demonstrated the effectiveness of rVSV-EΔM-tM2e to induce robust immune responses against influenza M2e and protect against lethal challenges from H1N1 and H3N2 strains. Here, we used UV to inactivate rVSV-EΔM-tM2e and tested its immunogenicity and protection in BALB/c mice from a mouse-adapted H1N1 influenza challenge. Using Enzyme-Linked Immunosorbent Assay (ELISA) and Antibody-Dependent Cellular Cytotoxicity (ADCC), the influenza anti-M2e immune responses specific to human, avian and swine influenza strains induced were characterized. Likewise, the specificity of the anti-M2e immune responses induced in recognizing M2e antigen on the surface of the cell was investigated using Fluorescence-Activated Cell Sorting (FACS) analysis. RESULTS: Like the live attenuated rVSV-EΔM-tM2e, the UV-inactivated rVSV-EΔM-tM2e was highly immunogenic against different influenza M2e from strains of different hosts, including human, swine, and avian, and protected against influenza H1N1 challenge in mice. The FACS analysis demonstrated that the induced immune responses can recognize influenza M2 antigens from human, swine and avian influenza strains. Moreover, the rVSV-EΔM-tM2e also induced ADCC activity against influenza M2e from different host strains. CONCLUSIONS: These findings suggest that UV-inactivated rVSV-EΔM-tM2e could be used as an inactivated vaccine against influenza viruses.
Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae , Raios Ultravioleta , Animais , Vacinas contra Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , Feminino , Camundongos , Humanos , Proteínas da Matriz Viral/imunologia , Proteínas da Matriz Viral/genética , Vesiculovirus/imunologia , Vesiculovirus/genética , Vacinas de Produtos Inativados/imunologiaRESUMO
COVID-19 and influenza both cause enormous disease burdens, and vaccines are the primary measures for their control. Since these viral diseases are transmitted through the mucosal surface of the respiratory tract, developing an effective and convenient mucosal vaccine should be a high priority. We previously reported a recombinant vesicular stomatitis virus (rVSV)-based bivalent vaccine (v-EM2/SPΔC1Delta) that protects animals from both SARS-CoV-2 and influenza viruses via intramuscular and intranasal immunization. Here, we further investigated the immune response induced by oral immunization with this vaccine and its protective efficacy in mice. The results demonstrated that the oral delivery, like the intranasal route, elicited strong and protective systemic immune responses against SARS-CoV-2 and influenza A virus. This included high levels of neutralizing antibodies (NAbs) against SARS-CoV-2, as well as strong anti-SARS-CoV-2 spike protein (SP) antibody-dependent cellular cytotoxicity (ADCC) and anti-influenza M2 ADCC responses in mice sera. Furthermore, it provided efficient protection against challenge with influenza H1N1 virus in a mouse model, with a 100% survival rate and a significantly low lung viral load of influenza virus. All these findings provide substantial evidence for the effectiveness of oral immunization with the rVSV bivalent vaccine.
RESUMO
Over the years, several distinct pathogenic coronaviruses have emerged, including the pandemic SARS-CoV-2, which is difficult to curtail despite the availability of licensed vaccines. The difficulty in managing SARS-CoV-2 is linked to changes in the variants' proteins, especially in the spike protein (SP) used for viral entry. These mutations, especially in the SP, enable the virus to evade immune responses induced by natural infection or vaccination. However, some parts of the SP in the S1 subunit and the S2 subunit are considered conserved among coronaviruses. In this review, we will discuss the epitopes in the SARS-CoV-2 S1 and S2 subunit proteins that have been demonstrated by various studies to be conserved among coronaviruses and may be immunogenic for the development of a vaccine. Considering the higher conservancy of the S2, we will further discuss the likely challenges that could limit the S2 subunit from inducing robust immune responses and the promising approaches to increase its immunogenicity.
RESUMO
The excessive release of pro-inflammatory cytokines in COVID-19 patients is deleterious to organs. The contribution of SARS-CoV-2 spike protein (S) to the inflammatory response is essential to understand its pathogenesis and virulence. Here, we present a protocol to produce and characterize HIV- and SARS-CoV-2-based virus-like particles and then evaluate the inflammatory cytokines' protein and mRNA levels produced in human macrophages by S of SARS-CoV-2 original strain and Delta variant. This protocol is applicable in evaluating S from different emerging variants. For complete details on the use and execution of this protocol, please refer to Ao et al. (2022).1.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Citocinas/genética , MacrófagosRESUMO
COVID-19 and influenza are both highly contagious respiratory diseases that have been serious threats to global public health. It is necessary to develop a bivalent vaccine to control these two infectious diseases simultaneously. In this study, we generated three attenuated replicating recombinant vesicular stomatitis virus (rVSV)-based vaccine candidates against both SARS-CoV-2 and influenza viruses. These rVSV-based vaccines coexpress SARS-CoV-2 Delta spike protein (SP) bearing the C-terminal 17 amino acid (aa) deletion (SPΔC) and I742A point mutation, or the SPΔC with a deletion of S2 domain, or the RBD domain, and a tandem repeat harboring four copies of the highly conserved influenza M2 ectodomain (M2e) that fused with the Ebola glycoprotein DC-targeting/activation domain. Animal immunization studies have shown that these rVSV bivalent vaccines induced efficient humoral and cellular immune responses against both SARS-CoV-2 SP and influenza M2 protein, including high levels of neutralizing antibodies against SARS-CoV-2 Delta and other variant SP-pseudovirus infections. Importantly, immunization of the rVSV bivalent vaccines effectively protected hamsters or mice against the challenges of SARS-CoV-2 Delta variant and lethal H1N1 and H3N2 influenza viruses and significantly reduced respiratory viral loads. Overall, this study provides convincing evidence for the high efficacy of this bivalent vaccine platform to be used and/or easily adapted to produce new vaccines against new or reemerging SARS-CoV-2 variants and influenza A virus infections. IMPORTANCE Given that both COVID-19 and influenza are preferably transmitted through respiratory droplets during the same seasons, it is highly advantageous to develop a bivalent vaccine that could simultaneously protect against both COVID-19 and influenza. In this study, we generated the attenuated replicating recombinant vesicular stomatitis virus (rVSV)-based vaccine candidates that target both spike protein of SARS-Cov-2 Delta variant and the conserved influenza M2 domain. Importantly, these vaccine candidates effectively protected hamsters or mice against the challenges of SARS-CoV-2 Delta variant and lethal H1N1 and H3N2 influenza viruses and significantly reduced respiratory viral loads.
Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Vacinas Combinadas , Estomatite Vesicular , Aminoácidos/genética , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Cricetinae , Glicoproteínas/genética , Glicoproteínas/imunologia , Humanos , Vírus da Influenza A Subtipo H3N2 , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Camundongos , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Combinadas/imunologia , Vacinas Sintéticas/genética , Vesiculovirus/imunologiaRESUMO
A universal influenza vaccine is required for broad protection against influenza infection. Here, we revealed the efficacy of novel influenza vaccine candidates based on Ebola glycoprotein dendritic cell (DC)-targeting domain (EΔM) fusion protein technology. The four copies of ectodomain matrix protein of influenza (tM2e) or M2e hemagglutinin stalk (HA stalk) peptides (HM2e) were fused with EΔM to generate EΔM-tM2e or EΔM-HM2e, respectively. We demonstrated that EΔM-HM2e- or EΔM-tM2e-pseudotyped viral particles can efficiently target DC/macrophages in vitro and induced significantly high titers of anti-HA and/or anti-M2e antibodies in mice. Significantly, the recombinant vesicular stomatitis virus (rVSV)-EΔM-tM2e and rVSV-EΔM-HM2e vaccines mediated rapid and potent induction of M2 or/and HA antibodies in mice sera and mucosa. Importantly, vaccination of rVSV-EΔM-tM2e or rVSV-EΔM-HM2e protected mice from influenza H1N1 and H3N2 challenges. Taken together, our study suggests that rVSV-EΔM-tM2e and rVSV-EΔM-HM2e are promising candidates that may lead to the development of a universal vaccine against different influenza strains.
RESUMO
The Delta variant had spread globally in 2021 and caused more serious disease than the original virus and Omicron variant. In this study, we investigated several virological features of Delta spike protein (SPDelta), including protein maturation, its impact on viral entry of pseudovirus and cell-cell fusion, and its induction of inflammatory cytokine production in human macrophages and dendritic cells. The results showed that SPΔCDelta exhibited enhanced S1/S2 cleavage in cells and pseudotyped virus-like particles (PVLPs). Further, SPΔCDelta elevated pseudovirus entry in human lung cell lines and significantly enhanced syncytia formation. Furthermore, we revealed that SPΔCDelta-PVLPs had stronger effects on stimulating NF-κB and AP-1 signaling in human monocytic THP1 cells and induced significantly higher levels of proinflammatory cytokine, such as TNF-α, IL-1ß, and IL-6, released from human macrophages and dendritic cells. Overall, these studies provide evidence to support the important role of SPΔCDelta during virus infection, transmission, and pathogenesis.
RESUMO
Until now, antiviral therapeutic agents are still urgently required for treatment or prevention of SARS-coronavirus 2 (SCoV-2) virus infection. In this study, we established a sensitive SCoV-2 Spike glycoprotein (SP), including an SP mutant D614G, pseudotyped HIV-1-based vector system and tested their ability to infect ACE2-expressing cells. Based on this system, we have demonstrated that an aqueous extract from the Natural herb Prunella vulgaris (NhPV) displayed potent inhibitory effects on SCoV-2 SP (including SPG614 mutant) pseudotyped virus (SCoV-2-SP-PVs) mediated infections. Moreover, we have compared NhPV with another compound, Suramin, for their anti-SARS-CoV-2 activities and the mode of their actions, and found that both NhPV and Suramin are able to directly interrupt SCoV-2-SP binding to its receptor ACE2 and block the viral entry step. Importantly, the inhibitory effects of NhPV and Suramin were confirmed by the wild type SARS-CoV-2 (hCoV-19/Canada/ON-VIDO-01/2020) virus infection in Vero cells. Furthermore, our results also demonstrated that the combination of NhPV/Suramin with an anti-SARS-CoV-2 neutralizing antibody mediated a more potent blocking effect against SCoV2-SP-PVs. Overall, by using SARS-CoV-2 SP-pseudotyped HIV-1-based entry system, we provide strong evidence that NhPV and Suramin have anti-SARS-CoV-2 activity and may be developed as a novel antiviral approach against SARS-CoV-2 infection.
Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19/virologia , Extratos Vegetais/farmacologia , Prunella/química , SARS-CoV-2/efeitos dos fármacos , Suramina/farmacologia , Internalização do Vírus/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Neutralizantes/farmacologia , COVID-19/genética , COVID-19/metabolismo , Linhagem Celular , Chlorocebus aethiops , Quimioterapia Combinada , Humanos , Mutação , Ligação Proteica , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismoRESUMO
The development of efficient vaccine approaches against HIV infection remains challenging in the vaccine field. Here, we developed an Ebola virus envelope glycoprotein (EboGP)-based chimeric fusion protein system and demonstrated that replacement of the mucin-like domain (MLD) of EboGP with HIV C2-V3-C3 (134 amino acids [aa]) or C2-V3-C3-V4-C4-V5-C5 (243 aa) polypeptides (EbGPΔM-V3 and EbGPΔM-V3-V5, respectively) still maintained the efficiency of EboGP-mediated viral entry into human macrophages and dendritic cells (DCs). Animal studies using mice revealed that immunization with virus-like particles (VLPs) containing the above chimeric proteins, especially EbGPΔM-V3, induced significantly more potent anti-HIV antibodies than HIV gp120 alone in mouse serum and vaginal fluid. Moreover, the splenocytes isolated from mice immunized with VLPs containing EbGPΔM-V3 produced significantly higher levels of gamma interferon (IFN-γ), interleukin 2 (IL-2), IL-4, IL-5, and macrophage inflammatory protein 1α (MIP-1α). Additionally, we demonstrated that coexpression of EbGPΔM-V3 and the HIV Env glycoprotein in a recombinant vesicular stomatitis virus (rVSV) vector elicited robust anti-HIV antibodies that may have specifically recognized epitopes outside or inside the C2-V3-C3 region of HIV-1 gp120 and cross-reacted with the gp120 from different HIV strains. Thus, this study has demonstrated the great potential of this DC-targeting vaccine platform as a new vaccine approach for improving immunogen delivery and increasing vaccine efficacy. IMPORTANCE Currently, there are more than 38.5 million reported cases of HIV globally. To date, there is no approved vaccine for HIV-1 infection. Thus, the development of an effective vaccine against HIV infection remains a global priority. This study revealed the efficacy of a novel dendritic cell (DC)-targeting vaccination approach against HIV-1. The results clearly show that the immunization of mice with virus-like particles (VLPs) and VSVs containing HIV Env and a fusion protein composed of a DC-targeting domain of Ebola virus GP with HIV C2-V3-C3 polypeptides (EbGPΔM-V3) could induce robust immune responses against HIV-1 Env and/or Gag in serum and vaginal mucosa. These findings provide a proof of concept of this novel and efficient DC-targeting vaccine approach in delivering various antigenic polypeptides of HIV-1 and/or other emergent infections to the host antigen-presenting cells to prevent HIV and other viral infections.
Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Células Dendríticas/imunologia , HIV-1/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Linhagem Celular Tumoral , Quimiocina CCL3/imunologia , Chlorocebus aethiops , Ebolavirus/imunologia , Feminino , Células HEK293 , Infecções por HIV/prevenção & controle , Humanos , Interferon gama/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Células THP-1 , Vacinas de Partículas Semelhantes a Vírus/imunologia , Células Vero , Vírus da Estomatite Vesicular Indiana/genéticaRESUMO
In the prevention of epidemic and pandemic viral infection, the use of the antiviral vaccine has been the most successful biotechnological and biomedical approach. In recent times, vaccine development studies have focused on recruiting and targeting immunogens to dendritic cells (DCs) and macrophages to induce innate and adaptive immune responses. Interestingly, Ebola virus (EBOV) glycoprotein (GP) has a strong binding affinity with DCs and macrophages. Shreds of evidence have also shown that the interaction between EBOV GP with DCs and macrophages leads to massive recruitment of DCs and macrophages capable of regulating innate and adaptive immune responses. Therefore, studies for the development of vaccine can utilize the affinity between EBOV GP and DCs/macrophages as a novel immunological approach to induce both innate and acquired immune responses. In this review, we will discuss the unique features of EBOV GP to target the DC, and its potential to elicit strong immune responses while targeting DCs/macrophages. This review hopes to suggest and stimulate thoughts of developing a stronger and effective DC-targeting vaccine for diverse virus infection using EBOV GP.
RESUMO
The development of an effective vaccine against HIV infection remains a global priority. Dendritic cell (DC)-based HIV immunotherapeutic vaccine is a promising approach which aims at optimizing the HIV-specific immune response using primed DCs to promote and enhance both the cellular and humoral arms of immunity. Since the Ebola virus envelope glycoprotein (EboGP) has strong DC-targeting ability, we investigated whether EboGP is able to direct HIV particles towards DCs efficiently and promote potent HIV-specific immune responses. Our results indicate that the incorporation of EboGP into non-replicating virus-like particles (VLPs) enhances their ability to target human monocyte-derived dendritic cells (MDDCs) and monocyte-derived macrophages (MDMs). Also, a mucin-like domain deleted EboGP (EboGPΔM) can further enhanced the MDDCs and MDMs-targeting ability. Furthermore, we investigated the effect of EboGP on HIV immunogenicity in mice, and the results revealed a significantly stronger HIV-specific humoral immune response when immunized with EboGP-pseudotyped HIV VLPs compared with those immunized with HIV VLPs. Splenocytes harvested from mice immunized with EboGP-pseudotyped HIV VLPs secreted increased levels of macrophage inflammatory proteins-1α (MIP-1α) and IL-4 upon stimulation with HIV Env and/or Gag peptides compared with those harvested from mice immunized with HIV VLPs. Collectively, this study provides evidence for the first time that the incorporation of EboGP in HIV VLPs can facilitate DC and macrophage targeting and induce more potent immune responses against HIV.
Assuntos
Vacinas contra a AIDS/imunologia , Células Dendríticas/efeitos dos fármacos , Anticorpos Anti-HIV/biossíntese , Infecções por HIV/prevenção & controle , Macrófagos/efeitos dos fármacos , Vacinas de Partículas Semelhantes a Vírus/imunologia , Proteínas do Envelope Viral/genética , Vacinas contra a AIDS/administração & dosagem , Vacinas contra a AIDS/genética , Animais , Quimiocina CCL3/genética , Quimiocina CCL3/imunologia , Células Dendríticas/imunologia , Células Dendríticas/virologia , Ebolavirus/química , Feminino , Expressão Gênica , Células HEK293 , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/crescimento & desenvolvimento , HIV-1/imunologia , Humanos , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Imunização , Imunogenicidade da Vacina , Interleucina-4/genética , Interleucina-4/imunologia , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Macrófagos/imunologia , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , Cultura Primária de Células , Baço/citologia , Baço/efeitos dos fármacos , Baço/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/genética , Proteínas do Envelope Viral/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologiaRESUMO
BACKGROUND: HIV integrase (IN) and its cellular cofactors, including lens-epithelium-derived growth factor (LEDGF/p75), Ku70, p300, and Rad52, are subject to small ubiquitin-like modifier (SUMO) modification. In addition to covalent SUMOylation, SUMO paralogs can also noncovalently bind proteins through SUMO-interacting motifs (SIMs). However, little is known about whether HIV IN contains SIMs and the roles of these motifs. RESULTS: We searched for the amino acid sequence of HIV IN and investigated three putative SIMs of IN: SIM1 72VILV75, SIM2 200IVDI203 and SIM3 257IKVV260. Our mutational analysis showed that 200IVDI203 and 257IKVV260 are two bona fide SIMs that mediate IN-SUMO noncovalent interactions. Additionally, a cell-based SUMOylation assay revealed that IN SIMs negatively regulate the SUMOylation of IN, as well as the interaction between IN and SUMO E2 conjugation enzyme Ubc9. Conversely, IN SIMs are required for its interactions with LEDGF/p75 but not with Ku70. Furthermore, our study reveals that SIM2 and SIM3 are required for the nuclear localization of IN. Finally, we investigated the impact of IN SIM2 and SIM3 on HIV single cycle replication in CD4+ C8166 T cells, and the results showed that viruses carrying IN SIM mutants are replication defective at the steps of the early viral life cycle, including reverse transcription, nuclear import and integration. CONCLUSION: Our data suggested that the INSIM-SUMO interaction constitutes a new regulatory mechanism of IN functions and might be important for HIV-1 replication.
Assuntos
Integrase de HIV/metabolismo , HIV-1/fisiologia , Proteína SUMO-1/metabolismo , Sumoilação , Replicação Viral , Motivos de Aminoácidos , Células HEK293 , Integrase de HIV/genética , HIV-1/enzimologia , Humanos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Reação em Cadeia da Polimerase em Tempo RealRESUMO
OBJECTIVE: Apoptosis plays an important role in both carcinogenesis and cancer treatment. Drugs or treatment strategies that can restore the apoptotic signaling pathways have the potential to eliminate cancer. Caspase 8 (CASP8) plays a vital role in the propagation of an enzymatic cascade that results in cell apoptosis. METHODS AND RESULTS: In this study, the authors investigated the inhibitory effects of a HIV Gag virus-like particles (VLPs) that are incorporated with an active CASP8 (Gag-CASP8-VLPs) on the growth of breast cancer. Their data have shown that Gag-CASP8-VLPs, pseudotyped by the stomatitis virus G protein (VSV-G), can efficiently enter and deliver active CASP8 into breast cancer cells, leading to massive cell apoptosis and death. Interestingly, an injection of Gag-CASP8-VLPs in the tumor tissues of a 4T1 mouse breast cancer model can effectively inhibit tumor growth, and the earlier the Gag-CASP8-VLPs is administered, the more profoundly the tumor growth is inhibited. CONCLUSIONS: Overall, Gag-CASP8-VLPs can deliver CASP8 into breast cancer cells, induce cell apoptosis, and inhibit tumor growth.
Assuntos
Neoplasias da Mama/terapia , Caspase 8/administração & dosagem , Animais , Apoptose/fisiologia , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Caspase 8/biossíntese , Caspase 8/genética , DNA Complementar/genética , DNA Complementar/metabolismo , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Plasmídeos/genética , Plasmídeos/metabolismo , TransfecçãoRESUMO
To date, a series of histone deacetylases have been documented to restrict HIV-1 replication at different steps. In this study, we identified histone deacetylase 10 (HDAC10) as an inhibitory factor against HIV-1 replication. Our results showed that endogenous HDAC10 is downregulated at the transcriptional level during HIV-1 replication. By knocking down HDAC10 in CD4+ T cells with specific shRNAs, we observed that the downregulation of HDAC10 significantly facilitates viral replication. Moreover, RQ-PCR analysis revealed that the downregulation of HDAC10 increased viral integrated DNA. Further, we identified that HDAC10 interacts with the HIV-1 integrase (IN) and that the region of residues from 55 to 165 in the catalytic domain of IN is required for HDAC10 binding. Interestingly, we found that the interaction between HDAC10 and IN specifically decreases the interaction between IN and cellular protein lens epithelium-derived growth factor (LEDGF/p75), which consequently leads to the inhibition of viral integration. In addition, we have investigated the role of HDAC10 in the late stage of viral replication by detecting the infectiousness of progeny virus produced from HDAC10 knockdown cells or HDAC10 overexpressing cells and revealed that the progeny virus infectivity is increased in the HDAC10 downregulated cells, but decreased in the HDAC10 overexpressed cells. Overall, these findings provide evidence that HDAC10 acts as a cellular inhibitory factor at the early and late stages of HIV-1 replication.
Assuntos
HIV-1/fisiologia , Histona Desacetilases/genética , Interações entre Hospedeiro e Microrganismos , Replicação Viral , Regulação para Baixo , Técnicas de Silenciamento de Genes , Células HEK293 , Integrase de HIV/genética , Integrase de HIV/metabolismo , Histona Desacetilases/metabolismo , Humanos , Ligação ProteicaRESUMO
During HIV infection, large amounts of progeny viral particles, including infectious virus and a large proportion of defective viral particles, are produced. Despite of the critical role of the infectious viruses in infection and pathogenesis in vivo, whether and how those defective viral particles, especially the virus-associated envelope glycoprotein (vEnv), would impact viral infection remains elusive. In this study, we investigated the effect of vEnv on HIV-infected T cells and demonstrated that the vEnv was able to stimulate HIV transcription in HIV-infected cells, including peripheral blood mononuclear cells (PBMCs) isolated from HIV patients. This vEnv-mediated HIV transcription activation is mediated primarily through the interaction between vEnv and CD4/coreceptors (CCR5 or CXCR4). Through transcriptome analysis, we found that numerous cellular gene products involved in various signaling pathways were modulated by vEnv. Among them, we have further identified a cellular microRNA miR181A2, which is downregulated upon vEnv treatment, resulting in increased HIV LTR histone H3 acetylation and HIV transcription. Furthermore, we also found a vEnv-modulated cellular histone deacetylase, HDAC10, whose downregulation is associated with the increased infectivity of progeny viruses. Altogether, these findings provide evidence of the important role vEnv plays in modulating cellular environments and facilitating HIV expression and infection.
Assuntos
Regulação Viral da Expressão Gênica , Infecções por HIV/virologia , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Transcrição Gênica , Replicação Viral , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Antígenos CD4/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , Infecções por HIV/metabolismo , Repetição Terminal Longa de HIV , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Ligação Proteica , Receptores CCR5/metabolismo , Receptores CXCR4/metabolismo , Transdução de Sinais , Latência ViralRESUMO
BACKGROUND: HIV-1 latency is a major obstacle for HIV-1 eradication. Extensive efforts are being directed toward the reactivation of latent HIV reservoirs with the aim of eliminating latently infected cells via the host immune system and/or virus-mediated cell lysis. RESULTS: We screened over 1,500 small molecules and kinase inhibitors and found that a small molecule, PKC412 (midostaurin, a broad-spectrum kinase inhibitor), can stimulate viral transcription and expression from the HIV-1 latently infected ACH2 cell line and primary resting CD4+ T cells. PKC412 reactivated HIV-1 expression in ACH2 cells in a dose- and time-dependent manner. Our results also suggest that the nuclear factor κB (NF-κB) signaling could be one of cellular pathways activated during PKC412-mediated activation of latent HIV-1 expression. Additionally, combining PKC412 with the HDAC inhibitor vorinostat (VOR) had an additive effect on HIV-1 reactivation in both ACH2 cells and infected resting CD4+ T cells. CONCLUSIONS: These studies provide evidence that PKC412 is a new compound with the potential for optimization as a latency-reactivator to eradicate HIV-1 infection.
Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/virologia , HIV-1/efeitos dos fármacos , Inibidores de Proteínas Quinases/metabolismo , Estaurosporina/análogos & derivados , Ativação Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , HIV-1/fisiologia , Humanos , Estaurosporina/metabolismoRESUMO
BACKGROUND: To suppress HIV infection, host cells have evolved numerous defenses that generally belong to the innate and adaptive immune responses. Over the last decade, extensive efforts have been focused on understanding HIV restriction factors and mechanisms of evasion. The host protein APOBEC3G (A3G) was identified as a member of cytidine deaminase family in 2002, and it was shown that, in the absence of HIV encoded Vif, A3G can block the replication of HIV-1 by introducing viral hypermutations during reverse transcription, also conferring innate immunity to the virus. Hence, therapeutic exploitation of A3G as an antiviral therapy has received an increasing amount of attention. Recent studies have developed a series of strategies to abolish the interaction between Vif and A3G or facilitate A3G expression, thus enhancing active A3G formation and delivering A3G into virion. CONCLUSION: Here we present a review that discuss the role of A3G as a host innate immunity factor and its application in HIV therapy.
Assuntos
Desaminase APOBEC-3G/metabolismo , Infecções por HIV/etiologia , Infecções por HIV/metabolismo , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Desaminase APOBEC-3G/genética , Animais , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Resistência à Doença/genética , Resistência à Doença/imunologia , Descoberta de Drogas , Farmacorresistência Viral , Regulação da Expressão Gênica , Infecções por HIV/tratamento farmacológico , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Família Multigênica , Ligação Proteica/efeitos dos fármacos , Replicação Viral , Produtos do Gene vif do Vírus da Imunodeficiência Humana/genéticaRESUMO
Currently, no approved antiviral therapeutic is available for treatment or prevention of Ebola virus (EBOV) infection. In this study, we characterized an EBOV-glycoprotein (GP) pseudotyped HIV-1-based vector system in different cell cultures, including human umbilical vein endothelial cells (HUVECs) and human macrophages, for the screening of anti-EBOV-GP agent(s). Based on this system, we demonstrated that an aqueous extract (CHPV) from the Chinese herb Prunella vulgaris displayed a potent inhibitory effect on EBOV-GP pseudotyped virus (EBOV-GP-V)-mediated infection in various cell lines, including HUVEC and macrophage. In addition, our results indicated that CHPV was able to block an eGFP-expressing Zaire ebola virus (eGFP-ZEBOV) infection in VeroE6 cells. The anti-EBOV activity of CHPV was exhibited in a dose-dependent manner. At a 12.5 µg/ml concentration, the CHPV showed a greater than 80% inhibition of EBOV-GP-V and eGFP-EBOV infections. Likewise, our studies suggested that the inhibitory effect of CHPV occurred by binding directly to EBOV-GP-Vs and blocking the early viral events. Interestingly, our results have shown that CHPV was able to enhance the anti-EBOV activity of the monoclonal antibody MAb 2G4 against EBOV-GP. Overall, this study provides evidence that CHPV has anti-EBOV activity and may be developed as a novel antiviral approach against EBOV infection.
Assuntos
Antivirais/farmacologia , Ebolavirus/efeitos dos fármacos , Extratos Vegetais/farmacologia , Prunella/química , Proteínas Virais de Fusão/antagonistas & inibidores , Internalização do Vírus/efeitos dos fármacos , Animais , Anticorpos Monoclonais/farmacologia , Antivirais/química , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Ebolavirus/metabolismo , Ebolavirus/fisiologia , Células HEK293 , HIV-1/genética , Células HeLa , Doença pelo Vírus Ebola/prevenção & controle , Doença pelo Vírus Ebola/virologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/virologia , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/virologia , Camundongos , Extratos Vegetais/química , Células Vero , Proteínas Virais de Fusão/metabolismoRESUMO
HIV-1 virus-like particles (VLPs) are promising vaccine candidates against HIV-1 infection. They are capable of preserving the native conformation of HIV-1 antigens and priming CD4+ and CD8+ T cell responses efficiently via cross presentation by both major histocompatibility complex (MHC) class I and II molecules. Progress has been achieved in the preclinical research of HIV-1 VLPs as prophylactic vaccines that induce broadly neutralizing antibodies and potent T cell responses. Moreover, the progress in HIV-1 dendritic cells (DC)-based immunotherapy provides us with a new vision for HIV-1 vaccine development. In this review, we describe updates from the past 5 years on the development of HIV-1 VLPs as a vaccine candidate and on the combined use of HIV particles with HIV-1 DC-based immunotherapy as efficient prophylactic and therapeutic vaccination strategies.
RESUMO
In this study, we have described a sensitive HIV-1 single cycle replicating virus that expresses a secreted Gaussia luciferase (Gluc) as a biomarker. This single cycle replicating virus was produced by the co-transfection of 293T cells with a multiple gene-deleted HIV provirus (ΔRI/ΔE/Gluc) and CMVin-Gag/Pol and viral envelope glycoprotein (Env) plasmids. The results showed that this HIV-1 virus efficiently infected and was restricted to one replication cycle in primary CD4+ T cells, macrophages and CD4+ T cell-grafted nude mouse. Because the viral genomic DNA lacks reverse transcriptase and integrase genes and has a partial deletion in the env gene, this trans-complemented virus could not be converted into the wild type virus after multiple passages in highly susceptible CD4+ C8166 T cells, demonstrating the safety of this system. Furthermore, infection with this virus was easily monitored by detecting the Gluc activity in the cell culture supernatants or in the animal peritoneal fluid or blood, which was shown to be more sensitive than the anti-p24 ELISA assay. This trans-complemented virus system is valuable for various HIV single cycle infection and viral expression studies in the laboratory where a biosafety level-3 containment facility is not accessible.