Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 16(5): 893-904, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28292941

RESUMO

C4.4A (LYPD3) has been identified as a cancer- and metastasis-associated internalizing cell surface protein that is expressed in non-small cell lung cancer (NSCLC), with particularly high prevalence in the squamous cell carcinoma (SCC) subtype. With the exception of skin keratinocytes and esophageal endothelial cells, C4.4A expression is scarce in normal tissues, presenting an opportunity to selectively treat cancers with a C4.4A-directed antibody-drug conjugate (ADC). We have generated BAY 1129980 (C4.4A-ADC), an ADC consisting of a fully human C4.4A-targeting mAb conjugated to a novel, highly potent derivative of the microtubule-disrupting cytotoxic drug auristatin via a noncleavable alkyl hydrazide linker. In vitro, C4.4A-ADC demonstrated potent antiproliferative efficacy in cell lines endogenously expressing C4.4A and inhibited proliferation of C4.4A-transfected A549 lung cancer cells showing selectivity compared with a nontargeted control ADC. In vivo, C4.4A-ADC was efficacious in human NSCLC cell line (NCI-H292 and NCI-H322) and patient-derived xenograft (PDX) models (Lu7064, Lu7126, Lu7433, and Lu7466). C4.4A expression level correlated with in vivo efficacy, the most responsive being the models with C4.4A expression in over 50% of the cells. In the NCI-H292 NSCLC model, C4.4A-ADC demonstrated equal or superior efficacy compared to cisplatin, paclitaxel, and vinorelbine. Furthermore, an additive antitumor efficacy in combination with cisplatin was observed. Finally, a repeated dosing with C4.4A-ADC was well tolerated without changing the sensitivity to the treatment. Taken together, C4.4A-ADC is a promising therapeutic candidate for the treatment of NSCLC and other cancers expressing C4.4A. A phase I study (NCT02134197) with the C4.4A-ADC BAY 1129980 is currently ongoing. Mol Cancer Ther; 16(5); 893-904. ©2017 AACR.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Moléculas de Adesão Celular/imunologia , Imunoconjugados/administração & dosagem , Aminobenzoatos/química , Aminobenzoatos/imunologia , Animais , Anticorpos Monoclonais/imunologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Moléculas de Adesão Celular/antagonistas & inibidores , Linhagem Celular Tumoral , Cisplatino/administração & dosagem , Cisplatino/imunologia , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/imunologia , Humanos , Imunoconjugados/química , Imunoconjugados/imunologia , Camundongos , Oligopeptídeos/química , Oligopeptídeos/imunologia , Paclitaxel/administração & dosagem , Paclitaxel/imunologia , Vimblastina/administração & dosagem , Vimblastina/análogos & derivados , Vimblastina/imunologia , Vinorelbina , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Cancer Res ; 76(21): 6331-6339, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27543601

RESUMO

The fibroblast growth factor receptor FGFR2 is overexpressed in a variety of solid tumors, including breast, gastric, and ovarian tumors, where it offers a potential therapeutic target. In this study, we present evidence of the preclinical efficacy of BAY 1187982, a novel antibody-drug conjugate (ADC). It consists of a fully human FGFR2 monoclonal antibody (mAb BAY 1179470), which binds to the FGFR2 isoforms FGFR2-IIIb and FGFR2-IIIc, conjugated through a noncleavable linker to a novel derivative of the microtubule-disrupting cytotoxic drug auristatin (FGFR2-ADC). In FGFR2-expressing cancer cell lines, this FGFR2-ADC exhibited potency in the low nanomolar to subnanomolar range and was more than 100-fold selective against FGFR2-negative cell lines. High expression levels of FGFR2 in cells correlated with efficient internalization, efficacy, and cytotoxic effects in vitro Pharmacokinetic analyses in mice bearing FGFR2-positive NCI-H716 tumors indicated that the toxophore metabolite of FGFR2-ADC was enriched more than 30-fold in tumors compared with healthy tissues. Efficacy studies demonstrated that FGFR2-ADC treatment leads to a significant tumor growth inhibition or tumor regression of cell line-based or patient-derived xenograft models of human gastric or breast cancer. Furthermore, FGFR2 amplification or mRNA overexpression predicted high efficacy in both of these types of in vivo model systems. Taken together, our results strongly support the clinical evaluation of BAY 1187982 in cancer patients and a phase I study (NCT02368951) has been initiated. Cancer Res; 76(21); 6331-9. ©2016 AACR.


Assuntos
Aminobenzoatos/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Imunoconjugados/uso terapêutico , Neoplasias/tratamento farmacológico , Oligopeptídeos/uso terapêutico , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/análise , Animais , Anticorpos Monoclonais Humanizados , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Mol Biotechnol ; 53(3): 326-35, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22427250

RESUMO

Monoclonal antibodies (mAbs) are the fastest growing class of biopharmaceuticals reflecting their diverse applications in research and the clinic. The correct glycosylation of mAbs is required to elicit effector functions such as complement-dependent and antibody-dependent cell-mediated cytotoxicity, although these may be undesirable for the treatment of certain chronic diseases. To gain insight into the properties of glycan-deficient mAbs, we generated and characterized six different aglycosylated human IgG1 mAbs (carrying the N297A mutation) and compared them to their glycosylated counterparts. We found no differences in solubility or heterogeneity, and all mAbs the remained stable in stress tests at 4 and 37 °C. Surface plasmon resonance spectroscopy showed no differences in binding affinity, and the in vivo terminal serum half-life and plasma clearance were similar in rats. However, differential scanning calorimetry revealed that the aglycosylated mAbs contained a less stable C(H)2 domain and they were also significantly more susceptible to pH-induced aggregation. We conclude that aglycosylated mAbs are functionally equivalent to their glycosylated counterparts and could be particularly suitable for certain therapeutic applications, such as the treatment of chronic diseases.


Assuntos
Anticorpos Monoclonais/farmacocinética , Imunoglobulina G/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Varredura Diferencial de Calorimetria , Clonagem Molecular , Regulação da Expressão Gênica , Glicosilação , Células HEK293 , Meia-Vida , Humanos , Imunoglobulina G/imunologia , Masculino , Ratos , Ratos Wistar , Ressonância de Plasmônio de Superfície
4.
Arzneimittelforschung ; 54(8): 483-97, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15460216

RESUMO

Aprotinin (GAS 9087-70-1) is known as a potent inhibitor of serine proteases such as trypsin, plasmin, tissue and plasma kallikrein. In this study, an aprotinin variant was designed by means of rationale mutagenesis that differs from aprotinin by two amino acids in the active site and by seven amino acids in the backbone. The recombinant protein is expressed in a secretory yeast system enabling large scale production. A purification procedure was developed to yield high amounts of pure and correctly processed aprotinin variant. The changes in the active site of the aprotinin variant increase the potency towards inhibition of plasma kallikrein whereas the inhibition of plasmin is only marginally reduced. The net charge of the molecule is reduced from the basic (IP 10.5) to the neutral range (IP 5.6). The recombinant aprotinin variant shows a decrease of immunogenicity in several models. No cross-reactivity with human and rabbit antibodies directed against aprotinin was observed both in in vivo and in ex vivo studies. In addition, the variant is more potent in a rat brain edema model of acute subdural hematoma compared to aprotinin.


Assuntos
Aprotinina/biossíntese , Aprotinina/farmacologia , Inibidores de Proteases/farmacologia , Aminoácidos/análise , Animais , Aprotinina/imunologia , Água Corporal/metabolismo , Química Encefálica/efeitos dos fármacos , Edema Encefálico/tratamento farmacológico , Fenômenos Químicos , Físico-Química , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Reações Cruzadas , DNA Complementar/biossíntese , Cães , Eletroforese Capilar , Eletroforese em Gel de Poliacrilamida , Feminino , Fermentação , Liofilização , Força da Mão/fisiologia , Hemodinâmica/efeitos dos fármacos , Liberação de Histamina/efeitos dos fármacos , Focalização Isoelétrica , Masculino , Peso Molecular , Pan troglodytes/imunologia , Mapeamento de Peptídeos , Inibidores de Proteases/imunologia , Ratos , Ratos Wistar , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacologia , Saccharomyces cerevisiae/metabolismo , Análise de Sequência de Proteína
5.
Br J Pharmacol ; 136(5): 773-83, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12086987

RESUMO

1. Soluble guanylyl cyclase (sGC) is the only proven receptor for the ubiquitous biological messenger nitric oxide (NO) and is intimately involved in many signal transduction pathways, most notably in regulating vascular tone and platelet function. sGC is a heterodimeric (alpha/ss) protein that converts GTP to cyclic GMP; NO binds to its prosthetic haem group. Here, we report the discovery of a novel sGC activating compound, its interaction with a previously unrecognized regulatory site and its therapeutic implications. 2. Through a high-throughput screen we identified BAY 58-2667, an amino dicarboxylic acid which potently activates sGC in an NO-independent manner. In contrast to NO, YC-1 and BAY 41-2272, the sGC stimulators described recently, BAY 58-2667 activates the enzyme even after it has been oxidized by the sGC inhibitor ODQ or rendered haem deficient. 3. Binding studies with radiolabelled BAY 58-2667 show a high affinity site on the enzyme. 4. Using photoaffinity labelling studies we identified the amino acids 371 (alpha-subunit) and 231 - 310 (ss-subunit) as target regions for BAY 58-2667. 5. sGC activation by BAY 58-2667 results in an antiplatelet activity both in vitro and in vivo and a potent vasorelaxation which is not influenced by nitrate tolerance. 6. BAY 58-2667 shows a potent antihypertensive effect in conscious spontaneously hypertensive rats. In anaesthetized dogs the hemodynamic effects of BAY 58-2667 and GTN are very similar on the arterial and venous system. 7. This novel type of sGC activator is a valuable research tool and may offer a new approach for treating cardiovascular diseases.


Assuntos
Sistema Cardiovascular/metabolismo , Heme/metabolismo , Óxido Nítrico/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Sistema Cardiovascular/efeitos dos fármacos , Cães , Ativadores de Enzimas/química , Ativadores de Enzimas/metabolismo , Ativadores de Enzimas/farmacologia , Feminino , Guanilato Ciclase , Técnicas In Vitro , Masculino , Coelhos , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Guanilil Ciclase Solúvel
6.
Br J Pharmacol ; 135(2): 333-43, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11815368

RESUMO

BAY 41-8543 is a novel, highly specific and so far the most potent NO-independent stimulator of sGC. Here we report the effects of BAY 41-8543 on the isolated enzyme, endothelial cells, platelets, isolated vessels and Langendorff heart preparation. BAY 41-8543 stimulates the recombinant sGC concentration-dependently from 0.0001 microM to 100 microM up to 92-fold. In combination, BAY 41-8543 and NO have synergistic effects over a wide range of concentrations. Similar results are shown in implying that BAY 41-8543 stimulates the sGC directly and furthermore makes the enzyme more sensitive to its endogenous activator NO. In vitro, BAY 41-8543 is a potent relaxing agent of aortas, saphenous arteries, coronary arteries and veins with IC(50)-values in the nM range. In the rat heart Langendorff preparation, BAY 41-8543 potently reduces coronary perfusion pressure from 10(-9) to 10(-6) g ml(-1) without any effect on left ventricular pressure and heart rate. BAY 41-8543 is effective even under nitrate tolerance conditions proved by the same vasorelaxing effect on aortic rings taken either from normal or nitrate-tolerant rats. BAY 41-8543 is a potent inhibitor of collagen-mediated aggregation in washed human platelets (IC(50)=0.09 microM). In plasma, BAY 41-8543 inhibits collagen-mediated aggregation better than ADP-induced aggregation, but has no effect on the thrombin pathway. BAY 41-8543 is also a potent direct stimulator of the cyclic GMP/PKG/VASP pathway in platelets and synergizes with NO over a wide range of concentrations. These results suggest that BAY 41-8543 is on the one hand an invaluable tool for studying sGC signaling in vitro and on the other hand its unique profile may offer a novel approach for treating cardiovascular diseases.


Assuntos
Ativadores de Enzimas/farmacologia , Guanilato Ciclase/metabolismo , Morfolinas/farmacologia , Óxido Nítrico , Pirimidinas/farmacologia , Animais , Aorta/efeitos dos fármacos , Aorta/enzimologia , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/enzimologia , Cães , Relação Dose-Resposta a Droga , Ativadores de Enzimas/química , Feminino , Veia Femoral/efeitos dos fármacos , Veia Femoral/enzimologia , Coração/efeitos dos fármacos , Coração/fisiologia , Humanos , Masculino , Óxido Nítrico/fisiologia , Pirazóis/química , Pirazóis/farmacologia , Piridinas/química , Piridinas/farmacologia , Coelhos , Ratos , Ratos Wistar , Suínos , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA