Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2205, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467613

RESUMO

Current gene silencing tools based on RNA interference (RNAi) or, more recently, clustered regularly interspaced short palindromic repeats (CRISPR)‒Cas13 systems have critical drawbacks, such as off-target effects (RNAi) or collateral mRNA cleavage (CRISPR‒Cas13). Thus, a more specific method of gene knockdown is needed. Here, we develop CRISPRδ, an approach for translational silencing, harnessing catalytically inactive Cas13 proteins (dCas13). Owing to its tight association with mRNA, dCas13 serves as a physical roadblock for scanning ribosomes during translation initiation and does not affect mRNA stability. Guide RNAs covering the start codon lead to the highest efficacy regardless of the translation initiation mechanism: cap-dependent, internal ribosome entry site (IRES)-dependent, or repeat-associated non-AUG (RAN) translation. Strikingly, genome-wide ribosome profiling reveals the ultrahigh gene silencing specificity of CRISPRδ. Moreover, the fusion of a translational repressor to dCas13 further improves the performance. Our method provides a framework for translational repression-based gene silencing in eukaryotes.


Assuntos
RNA Guia de Sistemas CRISPR-Cas , Ribossomos , Animais , Códon de Iniciação/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Inativação Gênica , Biossíntese de Proteínas/genética , Iniciação Traducional da Cadeia Peptídica , Mamíferos/genética
2.
J Biochem ; 171(4): 379-387, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35080613

RESUMO

In addition to the cytoplasmic translation system, eukaryotic cells house additional protein synthesis machinery in mitochondria. The importance of this in organello translation is exemplified by clinical pathologies associated with mutations in mitochondrial translation factors. Although a detailed understanding of mitochondrial translation has long been awaited, quantitative, comprehensive and spatiotemporal measurements have posed analytic challenges. The recent development of novel approaches for studying mitochondrial protein synthesis has overcome these issues and expands our understanding of the unique translation system. Here, we review the current technologies for the investigation of mitochondrial translation and the insights provided by their application.


Assuntos
Ribossomos Mitocondriais , Biossíntese de Proteínas , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Ribossomos Mitocondriais/metabolismo
3.
Front Genet ; 9: 617, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619453

RESUMO

The purpose of this study was to investigate the nuclear accumulation of heat shock protein 70 (HSP70), a molecular chaperonin in mouse skeletal muscle in response to aging, heat stress, and hindlimb unloading with or without reloading. Profiles of HSP70-specific nuclear transporter Hikeshi in skeletal muscles were also evaluated. Heat stress-associated nuclear accumulation of HSP70 was observed in slow soleus (SOL) and fast plantaris (PLA) muscles of young (10-week-old) mice. Mean nuclear expression level of HSP70 in slow medial gastrocnemius (MGAS) and PLA muscles of aged (100-week-old) mice increased ~4.8 and ~1.7 times, compared to that of young (10-week-old) mice. Reloading following 2-week hindlimb unloading caused accumulation of HSP70 in myonuclei in MGAS and PLA of young mice ( p < 0.05). However, reloading-associated nuclear accumulation of HSP70 was not observed in both types of muscles of aged mice. On the other hand, 2-week hindlimb unloading had no impact on the nuclear accumulation of HSP70 in both muscles of young and aged mice. Nuclear expression level of Hikeshi in both MGAS and PLA in mice was suppressed by aging. No significant changes in the nuclear Hikeshi in both muscles were induced by unloading with or without reloading. Results of this study indicate that the nuclear accumulation of HSP70 might show a protective response against cellular stresses in skeletal muscle and that the protective response may be suppressed by aging. Protective response to aging might depend on muscle fiber types.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA