Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(10): 1767-1775, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38417034

RESUMO

The low-dimensional quantum-magnet, linarite, PbCuS4(OH)2, has been investigated using terahertz (THz) spectroscopy coupled with detailed density functional theory (DFT) calculations in order to explore the effects of the temperature on its lattice vibrations. Linarite is characterized by largely isolated CuO chains propagating along the crystallographic b-axis, which at very low temperatures are responsible for exotic, quasi-1D magnetism in this material. To better understand the synergy between the structural bonds and lattice oscillations that contribute to these chains, polarized THz spectroscopic measurements were performed. Consolidating these results with detailed DFT calculations has revealed that the anisotropic vibrational motion for the THz modes is correlated with extreme motion associated with the crystallographic b-axis. An unexpected feature observed in the infrared spectrum is attributed to subtle lattice distortions which break the centro-symmetry in linarite at high temperatures. This phenomenon has not previously been observed in linarite and likely results from anharmonicity in lattice oscillations.

2.
Nat Commun ; 14(1): 7612, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993424

RESUMO

The stellar optoelectronic properties of metal halide perovskites provide enormous promise for next-generation optical devices with excellent conversion efficiencies and lower manufacturing costs. However, there is a long-standing ambiguity as to whether the perovskite surface/interface (e.g. structure, charge transfer or source of off-target recombination) or bulk properties are the more determining factor in device performance. Here we fabricate an array of CsPbI3 crystal and hybrid glass composites by sintering and globally visualise the property-performance landscape. Our findings reveal that the interface is the primary determinant of the crystal phases, optoelectronic quality, and stability of CsPbI3. In particular, the presence of a diffusion "alloying" layer is discovered to be critical for passivating surface traps, and beneficially altering the energy landscape of crystal phases. However, high-temperature sintering results in the promotion of a non-stoichiometric perovskite and excess traps at the interface, despite the short-range structure of halide is retained within the alloying layer. By shedding light on functional hetero-interfaces, our research offers the key factors for engineering high-performance perovskite devices.

3.
Small ; 19(50): e2304236, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37616513

RESUMO

Lead mixed-halide perovskites offer tunable bandgaps for optoelectronic applications, but illumination-induced phase segregation can quickly lead to changes in their crystal structure, bandgaps, and optoelectronic properties, especially for the Br-I mixed system because CsPbI3 tends to form a non-perovskite phase under ambient conditions. These behaviors can impact their performance in practical applications. By embedding such mixed-halide perovskites in a glassy metal-organic framework, a family of stable nanocomposites with tunable emission is created. Combining cathodoluminescence with elemental mapping under a transmission electron microscope, this research identifies a direct relationship between the halide composition and emission energy at the nanoscale. The composite effectively inhibits halide ion migration, and consequently, phase segregation even under high-energy illumination. The detailed mechanism, studied using a combination of spectroscopic characterizations and theoretical modeling, shows that the interfacial binding, instead of the nanoconfinement effect, is the main contributor to the inhibition of phase segregation. These findings pave the way to suppress the phase segregation in mixed-halide perovskites toward stable and high-performance optoelectronics.

4.
J Synchrotron Radiat ; 30(Pt 4): 780-787, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37338043

RESUMO

The routes by which foreign objects enter cells is well studied; however, their fate following uptake has not been explored extensively. Following exposure to synchrotron-sourced (SS) terahertz (THz) radiation, reversible membrane permeability has been demonstrated in eukaryotic cells by the uptake of nanospheres; nonetheless, cellular localization of the nanospheres remained unclear. This study utilized silica core-shell gold nanospheres (AuSi NS) of diameter 50 ± 5 nm to investigate the fate of nanospheres inside pheochromocytoma (PC 12) cells following SS THz exposure. Fluorescence microscopy was used to confirm nanosphere internalization following 10 min of SS THz exposure in the range 0.5-20 THz. Transmission electron microscopy followed by scanning transmission electron microscopy energy-dispersive spectroscopic (STEM-EDS) analysis was used to confirm the presence of AuSi NS in the cytoplasm or membrane, as single NS or in clusters (22% and 52%, respectively), with the remainder (26%) sequestered in vacuoles. Cellular uptake of NS in response to SS THz radiation could have suitable applications in a vast number of biomedical applications, regenerative medicine, vaccines, cancer therapy, gene and drug delivery.


Assuntos
Neoplasias das Glândulas Suprarrenais , Nanosferas , Feocromocitoma , Humanos , Radiação Terahertz , Nanosferas/química , Síncrotrons
5.
Nat Commun ; 14(1): 474, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36710270

RESUMO

Electroreduction of carbon dioxide with renewable electricity holds promise for achieving net-zero carbon emissions. Single-site catalysts have been reported to catalyze carbon-carbon (C-C) coupling-the indispensable step for more valuable multi-carbon (C2+) products-but were proven to be transformed in situ to metallic agglomerations under working conditions. Here, we report a stable single-site copper coordination polymer (Cu(OH)BTA) with periodic neighboring coppers and it exhibits 1.5 times increase of C2H4 selectivity compared to its metallic counterpart at 500 mA cm-2. In-situ/operando X-ray absorption, Raman, and infrared spectroscopies reveal that the catalyst remains structurally stable and does not undergo a dynamic transformation during reaction. Electrochemical and kinetic isotope effect analyses together with computational calculations show that neighboring Cu in the polymer provides suitably-distanced dual sites that enable the energetically favorable formation of an *OCCHO intermediate post a rate-determining step of CO hydrogenation. Accommodation of this intermediate imposes little changes of conformational energy to the catalyst structure during the C-C coupling. We stably operate full-device CO2 electrolysis at an industry-relevant current of one ampere for 67 h in a membrane electrode assembly. The coordination polymers provide a perspective on designing molecularly stable, single-site catalysts for electrochemical CO2 conversion.

6.
Adv Mater ; 35(10): e2209567, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36584285

RESUMO

Upgrading carbon dioxide/monoxide to multi-carbon C2+ products using renewable electricity offers one route to more sustainable fuel and chemical production. One of the most appealing products is acetate, the profitable electrosynthesis of which demands a catalyst with higher efficiency. Here, a coordination polymer (CP) catalyst is reported that consists of Cu(I) and benzimidazole units linked via Cu(I)-imidazole coordination bonds, which enables selective reduction of CO to acetate with a 61% Faradaic efficiency at -0.59 volts versus the reversible hydrogen electrode at a current density of 400 mA cm-2 in flow cells. The catalyst is integrated in a cation exchange membrane-based membrane electrode assembly that enables stable acetate electrosynthesis for 190 h, while achieving direct collection of concentrated acetate (3.3 molar) from the cathodic liquid stream, an average single-pass utilization of 50% toward CO-to-acetate conversion, and an average acetate full-cell energy efficiency of 15% at a current density of 250 mA cm-2 .

7.
Sensors (Basel) ; 22(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36366058

RESUMO

The attenuated total reflection (ATR) apparatus, with an added partial reflection/partial transmission mode, was used to demonstrate a novel way of characterizing water-based substances at 0.7 to 10.0 THz at the Australian Synchrotron THz-far infrared beamline. The technique utilized a diamond-crystal-equipped ATR to track temperature-dependent changes in reflectance. A "crossover flare" feature in the spectral scan was noted, which appeared to be a characteristic of water and water-dominated compounds. A "quiet zone" feature was also seen, where no temperature-dependent variation in reflectance exists. The variation in these spectral features can be used as a signature for the presence of bound and bulk water. The method can also potentially identify the presence of fats and oils in a biological specimen. The technique requires minimal sample preparation and is non-destructive. The presented method has the promise to provide a novel, real-time, low-preparation, analytical method for investigating biological material, which offers avenues for rapid medical diagnosis and industrial analysis.


Assuntos
Óleos de Plantas , Síncrotrons , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Austrália , Água
8.
Micromachines (Basel) ; 13(8)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35893168

RESUMO

THz band-pass filters were fabricated by femtosecond-laser ablation of 25-µm-thick micro-foils of stainless steel and Kapton film, which were subsequently metal coated with a ∼70 nm film, closely matching the skin depth at the used THz spectral window. Their spectral performance was tested in transmission and reflection modes at the Australian Synchrotron's THz beamline. A 25-µm-thick Kapton film performed as a Fabry-Pérot etalon with a free spectral range (FSR) of 119 cm-1, high finesse Fc≈17, and was tuneable over ∼10µm (at ∼5 THz band) with ß=30∘ tilt. The structure of the THz beam focal region as extracted by the first mirror (slit) showed a complex dependence of polarisation, wavelength and position across the beam. This is important for polarisation-sensitive measurements (in both transmission and reflection) and requires normalisation at each orientation of linear polarisation.

9.
Nanoscale Horiz ; 7(9): 1047-1053, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35796230

RESUMO

Polarisation analysis of light-matter interactions established for propagating optical far-fields is now extended into an evanescent field as demonstrated in this study using an attenuated total reflection (ATR) setup and a synchrotron source at THz frequencies. Scalar intensity E2, rather than a vector E-field, is used for absorbance analysis of the s- and p-components of the linearly polarised incident light. Absorption and phase changes induced by the sample and detected at the transmission port of the ATR accessory revealed previously non-accessible anisotropy in the absorption-dispersion properties of the sample probed by the evanescent optical near-field. Mapping of the sample's anisotropy perpendicular to its surface by the non-propagating light field is validated and the cos2 θ absorbance dependence was observed for the angle θ, where θ = 0° is aligned with the sample's surface. A four-polarisation method is presented for the absorbance mapping and a complimentary retardance spectrum is retrieved from the same measurement of the angular dependence of transmittance in structurally complex poly-hydroxybutyrate (PHB) and poly-L-lactic acid (PLLA) samples with amorphous and banded-spherulite (radially isotropic) crystalline regions. A possibility of all 3D mapping of anisotropy (polarisation tomography) is outlined.

10.
Chemistry ; 28(57): e202201929, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-35768334

RESUMO

As hydrogen bonded frameworks are held together by relatively weak interactions, they often form several different frameworks under slightly different synthesis conditions and respond dynamically to stimuli such as heat and vacuum. However, these dynamic restructuring processes are often poorly understood. In this work, three isoreticular hydrogen bonded organic frameworks assembled through charge-assisted amidinium⋅⋅⋅carboxylate hydrogen bonds (1C/C , 1Si/C and 1Si/Si ) are studied. Three distinct phases for 1C/C and four for 1Si/C and 1Si/Si are fully structurally characterized. The transitions between these phases involve extreme yet recoverable molecular-level framework reorganization. It is demonstrated that these transformations are related to water content and can be controlled by humidity, and that the non-porous anhydrous phase of 1C/C shows reversible water sorption through single crystal to crystal restructuring. This mechanistic insight opens the way for the future use of the inherent dynamism present in hydrogen bonded frameworks.

11.
Phys Chem Chem Phys ; 24(18): 10784-10797, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35475452

RESUMO

Hydrogen-bonded organic frameworks (HOFs) are a promising class of porous crystalline materials for gas sorption and gas separation technologies that can be constructed under mild synthetic conditions. In forming three-dimensional networks of flexible hydrogen bonds between donor/acceptor subunits, these materials have displayed high stability at elevated temperature and under vacuum. Although the structural properties of HOFs are commonly characterized by diffraction techniques, new complimentary methods to elucidate phase behaviour and host-guest interactions at the molecular level are sought, particularly those that can be applied under changing physical conditions or solvent environment. To this end, this study has applied synchrotron far-IR and mid-IR spectroscopy to probe the properties of two known and one new HOF system assembled from tetrahedral amidinium and carboxylate building blocks. All three frameworks produce feature-rich and resolved infrared profiles from 30 to 4000 cm-1 that provide information on hydrogen-bonded water solvent networks and the HOF channel topography via lattice and torsional bands. Comparison of experimental peaks to frequencies and atomic displacements (eigenvectors) predicted by high-level periodic DFT calculations have allowed for the assignment of vibrational modes associated with the aforementioned physicochemical properties. Now compiled, the specific vibrational modes identified as common to charge-assisted hydrogen-bonding motifs, as well as low frequency lattice and torsional bands attributed to HOF pore morphology and water-of-hydration networks, can act as diagnostic features in future spectroscopic investigations of HOF properties, such as those toward the design and tuning of host-guest properties for targeted applications.

12.
Analyst ; 147(5): 799-810, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35174821

RESUMO

Degradation of fingermark residue has a major impact on the successful forensic detection of latent fingermarks. The time course of degradation has been previously explored with bulk chemical analyses, but little is known about chemical alterations within specific regions of the fingermark, which is difficult to study with bulk measurement. Here we report the use of synchrotron-sourced attenuated total reflection-Fourier transform infrared (ATR-FTIR) microspectroscopy to provide spatio-temporal resolution of chemical changes within fingermark droplets, as a function of time since deposition, under ambient temperature conditions. Eccrine and sebaceous material within natural fingermark droplets were imaged on the micron scales at hourly intervals from the time of deposition until the first 7-13 hours after deposition, revealing that substantial dehydration occurred within the first 8 hours. Changes to lipid material were more varied, with samples exhibiting an increase or decrease in lipid concentration due to the degradation and redistribution of this material. Across 12 donors, it was noticeable that the initial chemical composition and morphology of the droplet varied greatly, which appeared to influence the rate of change of the droplet over time. Further, this study attempted to quantify the total water content within fingermark samples. The wide-spread nature and strength of the absorption of Terahertz/Far-infrared (THz/Far-IR) radiation by water vapour molecules were exploited for this purpose, using THz/Far-IR gas-phase spectroscopy. Upon heating, water confined in natural fingermarks was evaporated and expanded in a vacuum chamber equipped with multipass optics. The amount of water vapour was then quantified by high-spectral resolution analysis, and fingermarks were observed to lose approximately 14-20 µg of water. The combination of both ATR-FTIR and Far-IR gas-phase techniques highlight important implications for experimental design in fingermark research, and operational practices used by law enforcement agencies.


Assuntos
Dermatoglifia , Síncrotrons , Medicina Legal/métodos , Óptica e Fotônica , Espectrofotometria Infravermelho
13.
Angew Chem Int Ed Engl ; 61(4): e202112880, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-34694675

RESUMO

The melting behaviour of metal-organic frameworks (MOFs) has aroused significant research interest in the areas of materials science, condensed matter physics and chemical engineering. This work first introduces a novel method to fabricate a bimetallic MOF glass, through melt-quenching of the cobalt-based zeolitic imidazolate framework (ZIF) [ZIF-62(Co)] with an adsorbed ferric coordination complex. The high-temperature chemically reactive ZIF-62(Co) liquid facilitates the formation of coordinative bonds between Fe and imidazolate ligands, incorporating Fe nodes into the framework after quenching. The resultant Co-Fe bimetallic MOF glass therefore shows a significantly enhanced oxygen evolution reaction performance. The novel bimetallic MOF glass, when combined with the facile and scalable mechanochemical synthesis technique for both discrete powders and surface coatings on flexible substrates, enables significant opportunities for catalytic device assembly.

14.
Phys Chem Chem Phys ; 23(41): 23922-23932, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34652364

RESUMO

THz/Far Infrared synchrotron absorption experiments on pure and doped MgB2 samples show that the absorption spectral weight at low wavenumber (i.e., <110 cm-1) evolves as the temperature is reduced to 10 K. Distinct spectral peak intensities increase as the temperature of MgB2 and doped MgB2 approaches, and then crosses, the superconducting transition temperature. These experimental data suggest a strong link to superconductivity induced by subtle shifts in structural symmetry. Significant increases in absorption are observed at frequencies that correspond to the superconducting gaps for doped and pure MgB2, and at fractions of these frequency (or energy) values. This low wavenumber spectral transition is consistent with the notion that superlattice frequencies contribute to the optic modes of the MgB2 phonon dispersion and are critical to the superconducting transition for this structure. Key integer ratios are identified in real and reciprocal spaces that link bonding character, Fermi vectors and Fermi surfaces as well as phonon properties with geometric parameters and specific superlattice symmetries for MgB2. Similarly consistent spectral data at low wavenumber are also obtained for carbon doped Mg11B2. Density Functional Theory calculations of superlattice phonon dispersions result in folded mode frequencies that match these observed low wavenumber experiments. These results show that symmetry reductions, largely electronic in character although coupled to vibrations, occur with change in temperature and imply strong links to superconductivity mechanisms.

15.
Science ; 374(6567): 621-625, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34709926

RESUMO

Lead halide perovskite (LHP) semiconductors show exceptional optoelectronic properties. Barriers for their applications, however, lie in their polymorphism, instability to polar solvents, phase segregation, and susceptibility to the leaching of lead ions. We report a family of scalable composites fabricated through liquid-phase sintering of LHPs and metal-organic framework glasses. The glass acts as a matrix for LHPs, effectively stabilizing nonequilibrium perovskite phases through interfacial interactions. These interactions also passivate LHP surface defects and impart bright, narrow-band photoluminescence with a wide gamut for creating white light-emitting diodes (LEDs). The processable composites show high stability against immersion in water and organic solvents as well as exposure to heat, light, air, and ambient humidity. These properties, together with their lead self-sequestration capability, can enable breakthrough applications for LHPs.

16.
J Chem Phys ; 155(12): 124306, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34598554

RESUMO

Observations of the torsional and low-lying vibrational-torsional states of toluene, p-fluorotoluene, and m-fluorotoluene using the technique of two dimensional laser induced fluorescence (2D-LIF) have revealed interactions between the methyl torsion and low frequency out-of-plane methyl wagging vibration. These interactions can change the values of constants extracted from the analysis of rotational spectra, which usually assume that the large amplitude torsional motion can be treated independent of the small amplitude vibrations. Since out-of-plane methyl wagging modes will be present whenever a methyl group is attached to a planar frame, this type of torsion-vibration interaction is potentially widespread; it is thus important to establish the extent and strength of this type of interaction. 2D-LIF is limited to molecules that fluoresce from excited electronic states, and to explore interactions between torsion and methyl wagging vibrations in a wide range of molecules necessitates developing alternative experimental approaches. Infrared absorption spectroscopy is one such approach. It is shown that for the low torsional barrier case, the torsional sequence bands accompanying the out-of-plane methyl wagging transition provide a sensitive probe of the interaction. As an illustration, the far infrared absorption spectrum of toluene in the region of the M20 band (∼205 cm-1) is presented and analyzed. The torsional sequence structure provides insight into the higher torsional states (up to m = 7) in the ground vibrational state and M20. An analysis of these bands enables the torsion-vibration coupling and torsional constants to be extracted. A general method to analyze such spectra is presented.

17.
Biomed Opt Express ; 12(7): 4610-4626, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34457435

RESUMO

Applications of far infrared (Far-IR) and terahertz (THz) radiation in areas such as healthcare and security are fast-growing. As a consequence, humans and the environment are becoming more exposed to mm-wave and Far-IR radiation than previously. We examined typical skin-care and sunscreen ingredients and propitiatory products with transmission FTIR, ATR-FTIR and THz-time domain spectroscopy (THz-TDS) methods using fresh and dehydrated toad and fresh human skin samples for their absorption properties in these frequency ranges. The skin hydration compounds glycerol and sorbitol have comparable absorption characteristics to physiological bulk water. Products containing these and similar hydrating compounds have significant Far-IR absorption characteristics. The sunscreen ingredients ZnO (20 micron), TiO2 (mesh 325), and graphene platelet demonstrate a generally poor Far-IR absorbance, with TiO2 displaying some frequency-specific absorption in the 3-6 THz and 12 THz regions. The Far-IR absorbance of proprietary sunscreens was, however, shown not to be significant. The absorption properties of melanin, collagen, bound water, and other constituents are significant in dehydrated skin samples but are not of the same order of importance as the hydrating agents examined.

18.
Dalton Trans ; 49(33): 11743-11755, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32797136

RESUMO

The electrochemical energy storage of lithium and sodium ions from aqueous solutions in binary metal oxides is of great interest for renewable energy storage applications. Binary metal oxides are of interest for aqueous energy storage due to their better structural stability and electronic conductivity and tunability of redox potentials. They have also been widely studied as novel electrodes for supercapacitors. The interactions between water and lithium/sodium ions, and water and binary metal oxide surface determine the electrochemical reactions and their long-term stability. Our results indicate that the aqueous sodium electrolyte has a stronger influence on the capacitance and cycling stability of the binary (Ca and Mo) metal oxide electrode than its lithium cousin. The symmetric cell in a two-electrode configuration was assembled with the proposed binary metal oxide, which shows an average discharge voltage of 1.2 V, delivering a specific capacitance of 72 F g-1 at a specific energy density of 32 W h kg-1 based on the total mass of the active materials. The development of highly concentrated aqueous electrolytes such as the "water-in-salt" electrolyte showed a larger electrochemical (voltage) window with enhanced storage capacitance for increasing the salt concentrations has also been discussed.

19.
J Am Chem Soc ; 142(8): 3880-3890, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-31978302

RESUMO

The synthesis of four novel crystalline zeolitic imidazolate framework (ZIF) structures using a mixed-ligand approach is reported. The inclusion of both imidazolate and halogenated benzimidazolate-derived linkers leads to glass-forming behavior by all four structures. Melting temperatures are observed to depend on both electronic and steric effects. Solid-state NMR and terahertz (THz)/far-IR demonstrate the presence of a Zn-F bond for fluorinated ZIF glasses. In situ THz/far-IR spectroscopic techniques reveal the dynamic structural properties of crystal, glass, and liquid phases of the halogenated ZIFs, linking the melting behavior of ZIFs to the propensity of the ZnN4 tetrahedra to undergo thermally induced deformation. The inclusion of halogenated ligands within metal-organic framework (MOF) glasses improves their gas-uptake properties.

20.
ACS Omega ; 4(3): 5254-5269, 2019 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459697

RESUMO

Computational modeling was applied to far-infrared (FIR) spectra of Pt-based anticancer drugs to study the hydrolysis of these important molecules. Here, we present a study that investigates the influence of different factors-basis sets on non-Pt atoms, relativistic effective core potentials (RECPs) on the Pt atom, density functional theory (DFT) functionals, and solvation models-on the prediction of FIR spectra of two Pt-based anticancer drugs, cisplatin and carboplatin. Geometry optimizations and frequency calculations were performed with a range of functionals (PBE, PBE0, M06-L, and M06-2X), Dunning's correlation-consisted basis sets (VDZ, VTZ, aVDZ, and aVTZ), RECPs (VDZ-pp, VTZ-pp, aVDZ-pp, and aVTZ-pp), and solvation models (IEFPCM, CPCM, and SMD). The best combination of the basis set/DFT functional/solvation model was identified for each anticancer drug by comparing with experimentally available FIR spectra. Different combinations were established for cisplatin and carboplatin, which was rationalized by means of the partial atomic charge scheme, ChelpG, that was utilized to study the charge transfer between the Pt ion and ligands in both cisplatin and carboplatin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA